Exam 2024 (C)

1b

Let G=(V,E) be a tree with |V|2Prove: vV such that removing vertex v and all its edges will result in a graphG=(V{v},E)such that in all connected components of G there is at most |V|2 verticesProof:Let  tree G=(V,E):vV: connected component of G=(V{v},E):|[u]|>n2

2a

Let ALet f:AALet g:P(A)P(A),g(B)=f1[B]Prove or disprove: g is surjectivef is surjectiveDisproof:Let f:NN,f(n)=n+1f is not surjectiveLet CP(N)Let B={n+1|nC}Ng(B)=f1[B]=C

2b

Let ALet f:AALet g:P(A)P(A),g(B)=f1[B]Prove or disprove: g is surjectivef is injectiveProof:Let g be surjective

3

Let f:NN,{f(n)<nn1f(n)nn=1

3a

Prove: nN:kN:mn:fk(m)=1Proof:{f(n)<nn1f(n)nn=1[f(n)=nf(n)=n=1]Let nNLet k=nLet mnfn(m)fn1(m)f(m)mLet i[1,n]:fi(m)<fi1(m)|{fn(m),fn1(m),,f(m),m}|=n+1>|[m]|=m{fn(m),fn1(m),,f(m),m}[m]Contradiction!i[1,n+1]:fi(m)=fi1(m) then f(fi1(m))=fi1(m)=1fn+1(m)=fn(m)==fi1(m)=1fk(m)=1

3b

Is there kN:nN:fk(n)=1?Solution:Let f(n)={n1n>11n=1Let kNLet n=k+2f(n)=k+1,f2(n)=k,,fk(n)=21kN:nN:fk(n)1The answer is no, such k does not exist

4a

How many ways there are to sit 30 students in two circles, such that in one circle there areexactly 20 students and in the other there are exactly 10 students?Solution:Let us first choose 10 students to sit in the second circle(3010)Let us then arrange students in the first circle:19!Let us then arrange students in the second circle:9!The answer is: (3010)19!9!=30!2010=30!200

4b

How many ways there are to sit 30 students in two circles?Solution:Let one of the circle have 0 peopleThen there are 29! ways to arrange 30 students in a circleLet us choose 1i29 people to go to the first circle29!+29!+i=129(30i)(30i1)!(i1)!=i=12930!(30i)i+229!

4c

How many ways there are to rearrange 30 students in a circle such thatfor each student the left neighbor is new?Solution:Let us enumerate students in the circle from 1 to 30Let us choose number 1i30Let us count the number of ways to sit 30 students in a way thatneighbors (i,(i+1)mod30) sit as they wereLet Ai={ ways to arrange students such that (i,(i+1)mod30) sit as they were }|Ai|=(3011)!Let us now choose k such numbers1i1i2<ik30|Ai1Ai2Aik|=(301k)!By the Inclusion-Exclusion principle: |i=130Ai|=k=130(1)k1(30k)(301k)!Total number of ways to sit 30 students in a circle is 29!The answer is: 29!k=130(1)k1(30k)(301k)!=k=030(1)k(30k)(29k)!

4d

How many ways there are to arrange 30 students in a circle such thatEach student has a number and only one student has a number bigger than his neighborsSolution:Note that this special student can only have number 3029 can only be near 30There are 2 ways28 can only be near 29 or 30There are also 2 ways27 can only be near 28 or one of (29,30)There are also 2 waysAnd so on until we get to 1 which can only be placed between 2 and the other numberThe answer is 228

5

Let X be a setRP(X) is called a ring if A,BR:[ABR][ABR]

5a

Let RP(X) be a ringProve: KR:AR:AK=AProof:A,BR:[ABR][ABR]RCR(CCR)(CCR)CRRD:D=DK=R:AR:AK=A=A

5b

Let X be a setLet {Ri}iI be a family of ringsProve: iIRi is a ringProof:Let A,BiIRiiI:A,BRiiI:(ABRi)(ABRi)(ABiIRi)(ABiIRi)iIRi is a ring

5c

Let RP(X) be a ringProve: A,BR:(ABR)(ABR)Proof:A,BR:[ABR][ABR]Let A,BRABR,AB=(AB)(AB)R(AB)(AB)=ABABR(AB)A=((AB)A)(ABA)=A(AB)A(AB)={x|xAxAB}={x|xA(xAxB)}=={x|(xAxA)(xAxB)}=ABABR

5d

Let RP(X)R is called an algebra if ER:AR:AE=ALet R={AP(X)|A is finite}Prove: R is algebraX is finiteProof:Let X be finiteR=P(X) is finiteXRAP(X):XA=AR is an algebraLet R be an algebraER:AR:AE=AERE is finiteLet T={{x}|xX}TR{x}T:E{x}={x}xX:{x}ExEXEX is finite