Midterm

1

Let A be a finite setLet R be a relation on AR0=RRi+1=Ri{(a,b)A×A|cA:(a,c),(b,c)Ri}1.Prove or disprove: R1 is transitive2.Prove: kN0:Rk is symmetricRk+1 is symmetric3.Prove: nN0:Rn is transitive

2

Let A,B be non-empty setsLet  be an order relation on BLet R be a relation on BAf,gBA:fRgaA:f(a)g(a)1.Prove: R is an order relation2.Prove:  has a maximum R has a maximumLet hBA be surjectiveLet F:≼BA:F((b,b))=gWhere g(a)={bh(a)bbotherwise3.Prove:  is a total order F is injective