Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Exam 2022B (A)
1
Let
0
<
x
<
3
Prove:
x
ln
(
x
2
+
1
)
>
x
2
+
1
4
x
x
Proof:
Let
f
(
x
)
=
x
f
is continuous and differentiable on
(
0
,
∞
)
f
′
(
x
)
=
1
2
x
Let
g
(
x
)
=
ln
(
x
2
+
1
)
g
is continuous and differentiable on
(
0
,
∞
)
g
′
(
x
)
=
2
x
x
2
+
1
f
(
x
)
g
(
x
)
=
f
(
x
)
−
0
g
(
x
)
−
0
=
f
(
x
)
−
f
(
0
)
g
(
x
)
−
g
(
0
)
By the Langange’s theorem:
∃
c
∈
(
0
,
x
)
:
f
(
x
)
−
f
(
0
)
g
(
x
)
−
g
(
0
)
=
f
′
(
c
)
g
′
(
c
)
Let
h
(
x
)
=
f
′
(
x
)
g
′
(
x
)
=
x
2
+
1
4
x
x
h
is continuous and differentiable on
(
0
,
∞
)
h
′
(
x
)
=
8
x
2
x
−
(
x
2
+
1
)
6
x
16
x
3
=
8
x
2
x
−
6
x
2
x
−
6
x
16
x
3
=
x
2
x
−
3
x
8
x
3
=
=
x
2
−
3
8
x
5
0
<
x
<
3
⟹
h
(
x
)
<
0
⟹
[
c
<
x
⟹
h
(
c
)
>
h
(
x
)
]
⟹
f
(
x
)
g
(
x
)
=
f
′
(
c
)
g
′
(
c
)
=
h
(
c
)
>
h
(
x
)
=
f
′
(
x
)
g
′
(
x
)
⟹
x
ln
(
x
2
+
1
)
>
x
2
+
1
4
x
x
2a
Prove or disprove:
a
n
=
∑
k
=
n
2
n
1
k
converges
Proof:
a
n
+
1
−
a
n
=
∑
k
=
n
2
n
1
k
−
∑
k
=
n
+
1
2
n
+
2
1
k
=
1
2
n
+
1
+
1
2
n
+
2
−
1
n
≤
2
2
n
−
1
n
=
0
⟹
a
n
+
1
≤
a
n
⟹
a
n
is monotonically decreasing
a
n
≥
∑
k
=
n
2
n
1
n
=
1
⟹
a
n
is lower bounded
⟹
a
n
converges
2b
Let
a
n
>
0
Let
lim
n
→
∞
a
n
n
=
L
>
0
Prove or disprove:
lim
n
→
∞
a
n
a
n
+
1
=
1
L
Disproof:
Let
a
n
=
1
,
5
,
1
,
5
,
…
lim
n
→
∞
a
2
n
2
n
=
lim
n
→
∞
5
2
n
=
1
lim
n
→
∞
a
2
n
−
1
2
n
−
1
=
lim
n
→
∞
1
2
n
−
1
=
1
⟹
a
n
n
→
1
a
n
a
n
+
1
=
1
5
,
5
,
1
5
,
5
,
…
⟹
f
3a
∑
n
=
1
∞
(
−
1
)
n
n
n
n
Solution:
Let
a
n
=
(
−
1
)
n
n
n
n
∑
n
=
1
∞
|
a
n
|
=
∑
n
=
1
∞
n
n
n
=
∑
n
=
1
∞
1
n
n
−
1
∀
n
>
9
:
n
−
1
>
2
⟹
∑
n
=
1
∞
=
∑
n
=
1
9
1
n
n
−
1
+
∑
n
=
10
∞
1
n
n
−
1
∑
n
=
10
∞
1
n
n
−
1
≤
∑
n
=
10
∞
1
n
2
which converges
⟹
∑
n
=
10
∞
1
n
n
−
1
also converges
⟹
∑
n
=
1
∞
(
−
1
)
n
n
n
n
converges absolutely
3b
∑
n
=
1
∞
cos
(
π
n
2
)
19
n
+
7
n
Solution:
cos
(
π
n
2
)
=
0
,
−
1
,
0
,
1
,
0
,
−
1
,
0
,
1
,
…
⟹
S
N
=
0
,
−
1
,
0
,
0
,
0
,
−
1
,
0
,
0
,
0
,
…
⟹
|
S
N
|
≤
1
⟹
∑
n
=
1
∞
cos
(
π
n
2
)
is bounded
1
19
n
+
7
n
is monotonically decreasing towards
0
⟹
By Dirichlet’s test:
∑
n
=
1
∞
cos
(
π
n
2
)
19
n
+
7
n
converges at least conditionally
∑
n
=
1
∞
|
cos
(
π
n
2
)
19
n
+
7
n
|
=
∑
n
=
1
∞
|
cos
(
π
n
2
)
|
19
n
+
7
n
Let
a
n
=
|
cos
(
π
n
2
)
|
a
2
n
=
|
cos
(
π
n
)
|
=
1
a
2
n
−
1
=
|
cos
(
π
n
−
π
2
)
|
=
0
0
+
1
+
0
+
1
+
⋯
>
1
3
+
1
3
+
1
3
+
1
3
+
…
⟹
∑
a
n
>
∑
1
3
⟹
∑
n
=
1
∞
|
cos
(
π
n
2
)
|
19
n
+
7
n
>
∑
n
=
1
∞
1
57
n
+
21
n
>
⏟
n
>
n
∑
n
=
1
∞
1
78
n
which diverges
⟹
∑
n
=
1
∞
|
cos
(
π
n
2
)
|
19
n
+
7
n
also diverges
⟹
∑
n
=
1
∞
cos
(
π
n
2
)
19
n
+
7
n
converges conditionally
4a
Let
f
be a function
Let
f
be differentiable on
R
Let
{
a
n
}
,
{
b
n
}
⊆
R
:
a
n
−
b
n
→
0
Prove or disprove:
f
(
a
n
)
−
f
(
b
n
)
→
0
Disproof:
Let
f
(
x
)
=
x
2
Let
a
n
=
n
+
1
n
Let
b
n
=
n
a
n
−
b
n
=
1
n
→
0
f
(
a
n
)
−
f
(
b
n
)
=
(
n
+
1
n
)
2
−
n
2
=
2
+
1
n
→
2
⟹
f
(
a
n
)
−
f
(
b
n
)
↛
0
4b
Let
f
be a function
Let
f
be continuous on
R
Let
f
has no local extremums
Prove or disprove:
f
is monotonic
Proof:
Let
f
be non-monotonic
⟹
∃
a
<
b
:
f
(
a
)
>
f
(
b
)
,
∃
c
<
d
:
f
(
c
)
<
f
(
d
)
Let
a
,
b
,
c
,
d
∈
[
α
,
β
]
f
is continuous
⟹
∃
x
m
,
x
M
∈
[
α
,
β
]
:
∀
x
∈
[
α
,
β
]
:
f
(
x
m
)
≤
f
(
x
)
≤
f
(
x
M
)
f
has no local extremums
⟹
{
α
,
β
}
=
{
x
m
,
x
M
}
Case 1. Let
α
=
x
m
,
β
=
x
M
f
(
α
)
≤
f
(
b
)
<
f
(
a
)
≤
f
(
β
)
⟹
f
(
α
)
<
f
(
β
)
b
∈
[
a
,
β
]
,
f
(
a
)
>
f
(
b
)
⟹
a
is not a minimum of
[
a
,
β
]
f
(
β
)
≥
f
(
a
)
>
f
(
b
)
⟹
β
is not a minimum of
[
a
,
β
]
⟹
∃
x
m
∈
(
a
,
β
)
:
∀
x
∈
[
a
,
β
]
:
f
(
x
)
≥
f
(
x
m
)
⟹
x
m
is a local minimum of
f
−
Contradiction!
Case 2. Let
β
=
x
m
,
α
=
x
M
f
(
β
)
≤
f
(
c
)
<
f
(
d
)
≤
f
(
α
)
⟹
f
(
β
)
<
f
(
α
)
c
∈
[
α
,
d
]
,
f
(
c
)
<
f
(
d
)
⟹
d
is not a minimum of
[
α
,
d
]
f
(
α
)
≥
f
(
d
)
>
f
(
c
)
⟹
α
is not a minimum of
[
α
,
d
]
⟹
∃
x
m
∈
(
α
,
d
)
:
∀
x
∈
[
α
,
d
]
:
f
(
x
)
≥
f
(
x
m
)
⟹
x
m
is a local minimum of
f
−
Contradiction!
⟹
f
is monotonic
Alternative proof:
Let
f
be non-monotonic
⟹
∃
a
<
b
:
f
(
a
)
<
f
(
b
)
,
∃
c
<
d
:
f
(
c
)
>
f
(
d
)
Let
b
≤
c
(meaning that the non-monotonic part is a "hill")
Let
f
(
b
)
≥
f
(
c
)
⟹
f
(
a
)
<
f
(
b
)
>
f
(
d
)
a
<
b
<
c
<
d
⟹
b
∈
[
a
,
d
]
f
is continuous
⟹
∃
x
M
∈
[
a
,
d
]
:
∀
x
∈
[
a
,
d
]
:
f
(
x
)
≤
f
(
x
M
)
f
(
a
)
<
f
(
b
)
⟹
a
≠
x
M
f
(
d
)
<
f
(
b
)
⟹
d
≠
x
M
⟹
x
M
∈
(
a
,
d
)
⟹
x
M
is a local maximum of
f
−
Contradiction!
⟹
f
(
b
)
≤
f
(
c
)
⟹
f
(
a
)
<
f
(
c
)
>
f
(
d
)
a
<
b
≤
c
<
d
⟹
c
∈
[
a
,
d
]
f
is continuous
⟹
∃
x
M
∈
[
a
,
d
]
:
∀
x
∈
[
a
,
d
]
:
f
(
x
)
≤
f
(
x
M
)
f
(
a
)
<
f
(
c
)
⟹
a
≠
x
M
f
(
d
)
<
f
(
c
)
⟹
d
≠
x
M
⟹
x
M
∈
(
a
,
d
)
⟹
x
M
is a local maximum of
f
−
Contradiction!
Proof for non-monotonic part being a "pit" is similar
⟹
f
is monotonic
5
Find for all
a
∈
R
:
lim
n
→
∞
(
sin
(
x
−
a
)
−
sin
x
)
Solution:
a
=
0
⟹
lim
n
→
∞
(
sin
(
x
)
−
sin
(
x
)
)
=
0
Let
f
(
x
)
=
sin
x
f
is continuous and differentiable on
R
By the Lagrange theorem:
∃
c
∈
(
x
−
a
,
x
)
:
sin
(
x
)
−
sin
(
x
−
a
)
x
−
x
−
a
=
f
′
(
c
)
=
cos
(
c
)
⟹
−
1
≤
sin
(
x
)
−
sin
(
x
−
a
)
x
−
x
−
a
≤
1
⟹
x
−
a
−
x
≤
sin
(
x
)
−
sin
(
x
−
a
)
≤
x
−
x
−
a
lim
x
→
∞
x
−
x
−
a
=
lim
x
→
∞
a
x
⏟
→
∞
+
x
−
a
⏟
→
∞
=
0
⟹
lim
x
→
∞
x
−
a
−
x
=
−
0
=
0
⟹
−
lim
x
→
∞
sin
(
x
)
−
sin
(
x
−
a
)
=
lim
n
→
∞
(
sin
(
x
−
a
)
−
sin
x
)
=
0