Exam 2022B (A)

1

Let 0<x<3Prove: xln(x2+1)>x2+14xxProof:Let f(x)=xf is continuous and differentiable on (0,)f(x)=12xLet g(x)=ln(x2+1)g is continuous and differentiable on (0,)g(x)=2xx2+1f(x)g(x)=f(x)0g(x)0=f(x)f(0)g(x)g(0)By the Langange’s theorem: c(0,x):f(x)f(0)g(x)g(0)=f(c)g(c)Let h(x)=f(x)g(x)=x2+14xxh is continuous and differentiable on (0,)h(x)=8x2x(x2+1)6x16x3=8x2x6x2x6x16x3=x2x3x8x3==x238x50<x<3h(x)<0[c<xh(c)>h(x)]f(x)g(x)=f(c)g(c)=h(c)>h(x)=f(x)g(x)xln(x2+1)>x2+14xx

2a

Prove or disprove: an=k=n2n1k convergesProof:an+1an=k=n2n1kk=n+12n+21k=12n+1+12n+21n22n1n=0an+1anan is monotonically decreasingank=n2n1n=1an is lower boundedan converges

2b

Let an>0Let limnann=L>0Prove or disprove: limnanan+1=1LDisproof:Let an=1,5,1,5,limna2n2n=limn52n=1limna2n12n1=limn12n1=1ann1anan+1=15,5,15,5,f

3a

n=1(1)nnnnSolution:Let an=(1)nnnnn=1|an|=n=1nnn=n=11nn1n>9:n1>2n=1=n=191nn1+n=101nn1n=101nn1n=101n2 which convergesn=101nn1 also convergesn=1(1)nnnn converges absolutely

3b

n=1cos(πn2)19n+7nSolution:cos(πn2)=0,1,0,1,0,1,0,1,SN=0,1,0,0,0,1,0,0,0,|SN|1n=1cos(πn2) is bounded119n+7n is monotonically decreasing towards 0By Dirichlet’s test: n=1cos(πn2)19n+7n converges at least conditionallyn=1|cos(πn2)19n+7n|=n=1|cos(πn2)|19n+7nLet an=|cos(πn2)|a2n=|cos(πn)|=1a2n1=|cos(πnπ2)|=00+1+0+1+>13+13+13+13+an>13n=1|cos(πn2)|19n+7n>n=1157n+21n>n>nn=1178n which divergesn=1|cos(πn2)|19n+7n also divergesn=1cos(πn2)19n+7n converges conditionally

4a

Let f be a functionLet f be differentiable on RLet {an},{bn}R:anbn0Prove or disprove: f(an)f(bn)0Disproof:Let f(x)=x2Let an=n+1nLet bn=nanbn=1n0f(an)f(bn)=(n+1n)2n2=2+1n2f(an)f(bn)0

4b

Let f be a functionLet f be continuous on RLet f has no local extremumsProve or disprove: f is monotonicProof:Let f be non-monotonica<b:f(a)>f(b),c<d:f(c)<f(d)Let a,b,c,d[α,β]f is continuousxm,xM[α,β]:x[α,β]:f(xm)f(x)f(xM)f has no local extremums{α,β}={xm,xM}Case 1. Let α=xm,β=xMf(α)f(b)<f(a)f(β)f(α)<f(β)b[a,β],f(a)>f(b)a is not a minimum of [a,β]f(β)f(a)>f(b)β is not a minimum of [a,β]xm(a,β):x[a,β]:f(x)f(xm)xm is a local minimum of fContradiction!Case 2. Let β=xm,α=xMf(β)f(c)<f(d)f(α)f(β)<f(α)c[α,d],f(c)<f(d)d is not a minimum of [α,d]f(α)f(d)>f(c)α is not a minimum of [α,d]xm(α,d):x[α,d]:f(x)f(xm)xm is a local minimum of fContradiction!f is monotonicAlternative proof:Let f be non-monotonica<b:f(a)<f(b),c<d:f(c)>f(d)Let bc (meaning that the non-monotonic part is a "hill")Let f(b)f(c)f(a)<f(b)>f(d)a<b<c<db[a,d]f is continuousxM[a,d]:x[a,d]:f(x)f(xM)f(a)<f(b)axMf(d)<f(b)dxMxM(a,d)xM is a local maximum of fContradiction!f(b)f(c)f(a)<f(c)>f(d)a<bc<dc[a,d]f is continuousxM[a,d]:x[a,d]:f(x)f(xM)f(a)<f(c)axMf(d)<f(c)dxMxM(a,d)xM is a local maximum of fContradiction!Proof for non-monotonic part being a "pit" is similarf is monotonic

5

Find for all aR:limn(sin(xa)sinx)Solution:a=0limn(sin(x)sin(x))=0Let f(x)=sinxf is continuous and differentiable on RBy the Lagrange theorem: c(xa,x):sin(x)sin(xa)xxa=f(c)=cos(c)1sin(x)sin(xa)xxa1xaxsin(x)sin(xa)xxalimxxxa=limxax+xa=0limxxax=0=0limxsin(x)sin(xa)=limn(sin(xa)sinx)=0