Exam 2022B (B)

1

Let 0<x<1Prove: ln(x2+1)tanx<2xx2+1Proof:Let f(x)=ln(x2+1),f(0)=0f is continuous and differentiable on (0,)f(x)=2xx2+1Let g(x)=tanx,g(0)=0g is continuous and differentiable on (0,π2)g(x)=cos2x+sin2xcos2x=1cos2x=1+tan2xBy Cauchy’s theorem: c(0,x):f(x)f(0)g(x)g(0)=f(c)g(c)f(c)g(c)=2ccos2cc2+12cc2+1Let h(x)=2xx2+1h is continuous and differentiable on Rh(x)=2(x2+1)4x2(x2+1)2=2(1x2)(x2+1)20<x<1(1x2)>0h(x)>0[c<xh(c)<h(x)]ln(x2+1)tanx=f(x)g(x)=f(c)g(c)h(c)<h(x)=2xx2+1

2a

Let an be monotonically non-increasingProve or disprove: n=1an convergesnan0Proof:Let n=1an convergesn=12na2n convergesan0 and 2na2n0nN:kN:2kn2k+1an is monotonically non-increasinga2k+1ana2k2ka2k+1nan2k+1a2k122k+1a2k+10nan22ka2k0nan0

2b

Let an be monotonically non-increasingProve or disprove: nan0n=1an convergesDisproof:Let an=1nlnnnan=1lnn0n=12na2n=n=12n2nnln(2)=1ln(2)n=11n divergesn=1an diverges

3a

n=17n+19nnn3sin(1n)Solution:Let an=7n+19nnn3sin(1n)nN:0<1n1x(0,1]:sin(x)>0sin(1n)>0|sin(1n)|=sin(1n)Let bn=1n2limn|anbn|=7n+19nnnsin(1n)=limn7n+19nnsin(1n)1n1=limn7n+19nnLet cn=7n+19nlimncn+1cn=limn7n+1+19n+17n+19n=limn7(719)n0+19(719)n0+1=191=19limn7n+19nn=19limn|anbn|=19By the limit comparison test: [n=1bn convergesn=1an converges]n=1bn convergesn=1an also convergesn=17n+19nnn3sin(1n) converges absolutely

3b

n=1n+n2+n3++nnnn+1Solution:n+n2++nnnn+1=1nn+1nn1++1n1nn=11n divergesBy the direct comparison test: n=1n+n2+n3++nnnn+1 diverges

4a

Let f be a functionLet f be continuous on [a,b]Let f be differentiable on (a,b)Prove or disprove: f is bounded on (a,b)Disproof:f doesn’t have to be continuousLet f(x)={x5sin(1x7)x00x=0f is continuous on [1,1]f(0)=limx0f(x)f(0)x=limx0x4sin(1x7)=0f(x)={5x4sin(1x7)3x3cos(1x7)x00x=0x0cos(1x7)03x3cos(1x7)f(x) is not bounded on [1,1]

4b

Let f be a functionLet f be continuous on [0,1]Let f(0)=f(1)Let nNProve or disprove: c[0,1]:f(c)=f(c+1n)Proof:Let g(x)=f(x)f(x+1n)g(0)+g(1n)+g(2n)++g(n1n)==f(0)f(1n)+f(1n)f(2n)++f(n1n)f(1)=f(0)f(1)=0If any of additives is 0 c[0,1]:g(c)=0 and we are doneIf all additives are not 0, then there must be at least one negative and one positiveBy the intermediate value theorem exists c[a,b]:g(c)=0 and we are done

5b

Let an={7n=1sin(an1)n>1Find limnanSolution:a2=sin(a1)=sin(7)0<sin(7)1a3=sin(sin(a2))0<x1sin(x)>0sin(x)<x (Geometrical proof from lectures)an+1<anan is monotonically decreasing and bounded from below by 0an convergesLet limnan=Llimnan+1=limnsin(an)=limnsin(L)=sin(L)L=sin(L)n>1:0<an10L1L>0sin(L)<LL=0an0