Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Exam 2022B (B)
1
Let
0
<
x
<
1
Prove:
ln
(
x
2
+
1
)
tan
x
<
2
x
x
2
+
1
Proof:
Let
f
(
x
)
=
ln
(
x
2
+
1
)
,
f
(
0
)
=
0
f
is continuous and differentiable on
(
0
,
∞
)
f
′
(
x
)
=
2
x
x
2
+
1
Let
g
(
x
)
=
tan
x
,
g
(
0
)
=
0
g
is continuous and differentiable on
(
0
,
π
2
)
g
′
(
x
)
=
cos
2
x
+
sin
2
x
cos
2
x
=
1
cos
2
x
=
1
+
tan
2
x
By Cauchy’s theorem:
∃
c
∈
(
0
,
x
)
:
f
(
x
)
−
f
(
0
)
g
(
x
)
−
g
(
0
)
=
f
′
(
c
)
g
′
(
c
)
f
′
(
c
)
g
′
(
c
)
=
2
c
cos
2
c
c
2
+
1
≤
2
c
c
2
+
1
Let
h
(
x
)
=
2
x
x
2
+
1
h
is continuous and differentiable on
R
h
′
(
x
)
=
2
(
x
2
+
1
)
−
4
x
2
(
x
2
+
1
)
2
=
2
(
1
−
x
2
)
(
x
2
+
1
)
2
0
<
x
<
1
⟹
(
1
−
x
2
)
>
0
⟹
h
′
(
x
)
>
0
⟹
[
c
<
x
⟹
h
(
c
)
<
h
(
x
)
]
⟹
ln
(
x
2
+
1
)
tan
x
=
f
(
x
)
g
(
x
)
=
f
′
(
c
)
g
′
(
c
)
≤
h
(
c
)
<
h
(
x
)
=
2
x
x
2
+
1
2a
Let
a
n
be monotonically non-increasing
Prove or disprove:
∑
n
=
1
∞
a
n
converges
⟹
n
a
n
→
0
Proof:
Let
∑
n
=
1
∞
a
n
converges
⟹
∑
n
=
1
∞
2
n
a
2
n
converges
⟹
a
n
→
0
and
2
n
a
2
n
→
0
∀
n
∈
N
:
∃
k
∈
N
:
2
k
≤
n
≤
2
k
+
1
a
n
is monotonically non-increasing
⟹
a
2
k
+
1
≤
a
n
≤
a
2
k
⟹
2
k
a
2
k
+
1
≤
n
a
n
≤
2
k
+
1
a
2
k
⟹
1
2
2
k
+
1
a
2
k
+
1
⏟
→
0
≤
n
a
n
≤
2
⋅
2
k
a
2
k
⏟
→
0
⟹
n
a
n
→
0
2b
Let
a
n
be monotonically non-increasing
Prove or disprove:
n
a
n
→
0
⟹
∑
n
=
1
∞
a
n
converges
Disproof:
Let
a
n
=
1
n
ln
n
n
a
n
=
1
ln
n
→
0
∑
n
=
1
∞
2
n
a
2
n
=
∑
n
=
1
∞
2
n
2
n
n
ln
(
2
)
=
1
ln
(
2
)
∑
n
=
1
∞
1
n
diverges
⟹
∑
n
=
1
∞
a
n
diverges
3a
∑
n
=
1
∞
7
n
+
19
n
n
n
3
sin
(
1
n
)
Solution:
Let
a
n
=
7
n
+
19
n
n
n
3
sin
(
1
n
)
∀
n
∈
N
:
0
<
1
n
≤
1
∀
x
∈
(
0
,
1
]
:
sin
(
x
)
>
0
⟹
sin
(
1
n
)
>
0
⟹
|
sin
(
1
n
)
|
=
sin
(
1
n
)
Let
b
n
=
1
n
2
lim
n
→
∞
|
a
n
b
n
|
=
7
n
+
19
n
n
n
sin
(
1
n
)
=
lim
n
→
∞
7
n
+
19
n
n
sin
(
1
n
)
1
n
⏟
→
1
=
lim
n
→
∞
7
n
+
19
n
n
Let
c
n
=
7
n
+
19
n
lim
n
→
∞
c
n
+
1
c
n
=
lim
n
→
∞
7
n
+
1
+
19
n
+
1
7
n
+
19
n
=
lim
n
→
∞
7
⋅
(
7
19
)
n
⏞
→
0
+
19
(
7
19
)
n
⏟
→
0
+
1
=
19
1
=
19
⟹
lim
n
→
∞
7
n
+
19
n
n
=
19
⟹
lim
n
→
∞
|
a
n
b
n
|
=
19
⟹
By the limit comparison test:
[
∑
n
=
1
∞
b
n
converges
⟺
∑
n
=
1
∞
a
n
converges
]
∑
n
=
1
∞
b
n
converges
⟹
∑
n
=
1
∞
a
n
also converges
⟹
∑
n
=
1
∞
7
n
+
19
n
n
n
3
sin
(
1
n
)
converges absolutely
3b
∑
n
=
1
∞
n
+
n
2
+
n
3
+
⋯
+
n
n
n
n
+
1
Solution:
n
+
n
2
+
⋯
+
n
n
n
n
+
1
=
1
n
n
+
1
n
n
−
1
+
⋯
+
1
n
≥
1
n
∑
n
=
1
∞
1
n
diverges
⟹
By the direct comparison test:
∑
n
=
1
∞
n
+
n
2
+
n
3
+
⋯
+
n
n
n
n
+
1
diverges
4a
Let
f
be a function
Let
f
be continuous on
[
a
,
b
]
Let
f
be differentiable on
(
a
,
b
)
Prove or disprove:
f
′
is bounded on
(
a
,
b
)
Disproof:
f
′
doesn’t have to be continuous
Let
f
(
x
)
=
{
x
5
sin
(
1
x
7
)
x
≠
0
0
x
=
0
f
is continuous on
[
−
1
,
1
]
f
′
(
0
)
=
lim
x
→
0
f
(
x
)
−
f
(
0
)
x
=
lim
x
→
0
x
4
sin
(
1
x
7
)
=
0
⟹
f
′
(
x
)
=
{
5
x
4
sin
(
1
x
7
)
−
3
x
3
cos
(
1
x
7
)
x
≠
0
0
x
=
0
x
→
0
⟹
cos
(
1
x
7
)
↛
0
⟹
3
x
3
cos
(
1
x
7
)
→
∞
⟹
f
′
(
x
)
is not bounded on
[
−
1
,
1
]
4b
Let
f
be a function
Let
f
be continuous on
[
0
,
1
]
Let
f
(
0
)
=
f
(
1
)
Let
n
∈
N
Prove or disprove:
∃
c
∈
[
0
,
1
]
:
f
(
c
)
=
f
(
c
+
1
n
)
Proof:
Let
g
(
x
)
=
f
(
x
)
−
f
(
x
+
1
n
)
g
(
0
)
+
g
(
1
n
)
+
g
(
2
n
)
+
⋯
+
g
(
n
−
1
n
)
=
=
f
(
0
)
−
f
(
1
n
)
+
f
(
1
n
)
−
f
(
2
n
)
+
⋯
+
f
(
n
−
1
n
)
−
f
(
1
)
=
f
(
0
)
−
f
(
1
)
=
0
If any of additives is 0
∃
c
∈
[
0
,
1
]
:
g
(
c
)
=
0
and we are done
If all additives are not 0, then there must be at least one negative and one positive
⟹
By the intermediate value theorem exists
c
∈
[
a
,
b
]
:
g
(
c
)
=
0
and we are done
5b
Let
a
n
=
{
7
n
=
1
sin
(
a
n
−
1
)
n
>
1
Find
lim
n
→
∞
a
n
Solution:
a
2
=
sin
(
a
1
)
=
sin
(
7
)
0
<
sin
(
7
)
≤
1
a
3
=
sin
(
sin
(
a
2
)
)
0
<
x
≤
1
⟹
sin
(
x
)
>
0
sin
(
x
)
<
x
(Geometrical proof from lectures)
⟹
a
n
+
1
<
a
n
⟹
a
n
is monotonically decreasing and bounded from below by
0
⟹
a
n
converges
Let
lim
n
→
∞
a
n
=
L
lim
n
→
∞
a
n
+
1
=
lim
n
→
∞
sin
(
a
n
)
=
lim
n
→
∞
sin
(
L
)
=
sin
(
L
)
⟹
L
=
sin
(
L
)
∀
n
>
1
:
0
<
a
n
≤
1
⟹
0
≤
L
≤
1
L
>
0
⟹
sin
(
L
)
<
L
⟹
L
=
0
⟹
a
n
→
0