Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Exam 2023B (A)
1
Let
x
>
3
Prove:
2
ln
(
x
−
2
)
x
+
1
−
2
>
4
x
+
1
x
−
2
Proof:
Let
f
(
x
)
=
2
ln
(
x
−
2
)
f
(
3
)
=
0
f
′
(
x
)
=
2
x
−
2
Let
g
(
x
)
=
x
+
1
−
2
g
′
(
x
)
=
1
2
x
+
1
g
(
3
)
=
0
By the Lagrange theorem:
∃
c
∈
(
3
,
x
)
:
f
(
x
)
g
(
x
)
=
f
(
x
)
−
f
(
3
)
g
(
x
)
−
g
(
3
)
=
f
′
(
c
)
g
′
(
c
)
Let
h
(
x
)
=
f
′
(
x
)
g
′
(
x
)
=
4
x
+
1
x
−
2
h
′
(
x
)
=
2
x
−
4
x
+
1
−
4
x
+
1
(
x
−
2
)
2
=
2
x
−
4
−
4
x
−
4
x
+
1
(
x
−
2
)
2
=
−
2
x
−
8
x
+
1
(
x
−
2
)
2
∀
x
>
3
:
h
′
(
x
)
<
0
⟹
∀
3
<
c
<
x
:
h
(
c
)
>
h
(
x
)
⟹
f
(
x
)
g
(
x
)
>
h
(
x
)
⟹
2
ln
(
x
−
2
)
x
+
1
−
2
>
4
x
+
1
x
−
2
2
Let
f
be a function on
I
f
is called continuous in equal measure on
I
if
∀
{
a
n
}
,
{
b
n
}
⊆
I
:
a
n
−
b
n
→
0
⟹
f
(
a
n
)
−
f
(
b
n
)
→
0
2a
Let
f
be a function
Let
f
be continuous on
[
a
,
b
]
Prove:
f
is continuous in equal measure on
[
a
,
b
]
Proof:
Let
{
a
n
}
,
{
b
n
}
⊆
[
a
,
b
]
:
a
n
−
b
n
→
0
Let
f
(
a
n
)
−
f
(
b
n
)
↛
0
⟹
∃
ε
>
0
:
∃
n
k
:
∀
k
:
|
f
(
a
n
k
)
−
f
(
b
n
k
)
|
>
ε
{
a
n
k
−
b
n
k
}
⊆
{
a
n
−
b
n
}
⟹
a
n
k
−
b
n
k
→
0
{
a
n
k
}
⊆
{
a
n
}
⊆
[
a
,
b
]
⟹
∃
{
a
n
k
j
}
→
L
∈
[
a
,
b
]
{
b
n
k
j
}
⊆
{
b
n
}
⊆
[
a
,
b
]
a
n
k
j
−
b
n
k
j
→
0
⟹
b
n
k
j
→
L
⟹
f
(
a
n
k
j
)
→
f
(
L
)
,
f
(
b
n
k
j
)
→
f
(
L
)
⟹
f
(
a
n
k
j
)
−
f
(
b
n
k
j
)
→
0
{
f
(
a
n
k
j
)
−
f
(
b
n
k
j
)
}
⊆
{
f
(
a
n
k
)
−
f
(
b
n
k
)
}
⟹
∀
j
∈
N
:
|
f
(
a
n
k
j
)
−
f
(
b
n
k
j
)
|
≥
ε
−
Contradiction!
⟹
f
(
a
n
)
−
f
(
b
n
)
→
0
2b
Show:
f
(
x
)
=
x
2
is not continuous in equal measure on
[
1
,
∞
)
Solution:
Let
a
n
=
n
+
1
n
Let
b
n
=
n
a
n
−
b
n
=
1
n
→
0
f
(
a
n
)
−
f
(
b
n
)
=
(
n
+
1
n
)
2
−
n
2
=
n
2
+
2
+
1
n
2
−
n
2
=
2
+
1
n
2
→
2
⟹
f
(
a
n
)
−
f
(
b
n
)
↛
0
3
Let
a
n
=
∑
k
=
n
3
n
1
k
3a
Prove:
a
n
converges
Proof:
a
n
+
1
−
a
n
=
∑
k
=
n
+
1
3
n
+
3
1
k
−
∑
k
=
n
3
n
1
k
=
1
3
n
+
1
+
1
3
n
+
2
+
1
3
n
+
3
−
1
n
<
3
3
n
−
1
n
=
0
⟹
a
n
+
1
<
a
n
⟹
a
n
is monotonically descending
a
n
≥
∑
k
=
n
3
n
1
3
n
=
2
n
3
n
=
2
3
⟹
a
n
is lower-bounded
⟹
a
n
converges
3b
Prove:
a
n
→
L
≥
2
3
Proof:
a
n
≥
2
3
⟹
L
≥
2
3
4
Copy of 2024(A)
5a
Prove:
(
a
r
c
c
o
t
x
)
′
=
−
1
1
+
x
2
Proof:
(
f
−
1
)
′
=
1
f
′
(
f
−
1
(
x
)
)
Let
f
(
x
)
=
cot
x
f
′
(
x
)
=
(
cos
x
sin
x
)
′
=
−
sin
2
x
−
cos
2
x
sin
2
x
=
−
1
−
cot
2
x
⟹
f
′
(
f
−
1
(
x
)
)
=
−
1
−
cot
2
(
a
r
c
c
o
t
x
)
=
−
1
−
x
2
(
f
−
1
(
x
)
)
′
=
1
−
1
−
x
2
=
−
1
1
+
x
2
5b
Find:
lim
x
→
0
+
1
x
(
1
x
x
−
1
)
Solution:
1
x
(
1
x
x
−
1
)
=
x
−
x
−
1
x
=
e
−
x
ln
x
−
1
x
lim
x
→
0
+
x
ln
x
=
⋯
=
0
⟹
e
−
x
ln
x
→
1
⟹
lim
x
→
0
+
e
−
x
ln
x
−
1
x
=
L
lim
x
→
0
+
−
(
x
ln
x
)
′
e
−
x
ln
x
=
−
lim
x
→
0
+
(
ln
x
+
1
)
⋅
lim
x
→
0
+
e
−
x
ln
x
=
=
−
(
−
∞
)
⋅
1
=
∞
⟹
lim
x
→
0
+
1
x
(
1
x
x
−
1
)
=
∞