Exam 2023B (A)

1

Let x>3Prove: 2ln(x2)x+12>4x+1x2Proof:Let f(x)=2ln(x2)f(3)=0f(x)=2x2Let g(x)=x+12g(x)=12x+1g(3)=0By the Lagrange theorem: c(3,x):f(x)g(x)=f(x)f(3)g(x)g(3)=f(c)g(c)Let h(x)=f(x)g(x)=4x+1x2h(x)=2x4x+14x+1(x2)2=2x44x4x+1(x2)2=2x8x+1(x2)2x>3:h(x)<03<c<x:h(c)>h(x)f(x)g(x)>h(x)2ln(x2)x+12>4x+1x2

2

Let f be a function on If is called continuous in equal measure on I if{an},{bn}I:anbn0f(an)f(bn)0

2a

Let f be a functionLet f be continuous on [a,b]Prove: f is continuous in equal measure on [a,b]Proof:Let {an},{bn}[a,b]:anbn0Let f(an)f(bn)0ε>0:nk:k:|f(ank)f(bnk)|>ε{ankbnk}{anbn}ankbnk0{ank}{an}[a,b]{ankj}L[a,b]{bnkj}{bn}[a,b]ankjbnkj0bnkjLf(ankj)f(L),f(bnkj)f(L)f(ankj)f(bnkj)0{f(ankj)f(bnkj)}{f(ank)f(bnk)}jN:|f(ankj)f(bnkj)|εContradiction!f(an)f(bn)0

2b

Show: f(x)=x2 is not continuous in equal measure on [1,)Solution:Let an=n+1nLet bn=nanbn=1n0f(an)f(bn)=(n+1n)2n2=n2+2+1n2n2=2+1n22f(an)f(bn)0

3

Let an=k=n3n1k

3a

Prove: an convergesProof:an+1an=k=n+13n+31kk=n3n1k=13n+1+13n+2+13n+31n<33n1n=0an+1<anan is monotonically descendingank=n3n13n=2n3n=23an is lower-boundedan converges

3b

Prove: anL23Proof:an23L23

4

Copy of 2024(A)

5a

Prove: (arccotx)=11+x2Proof:(f1)=1f(f1(x))Let f(x)=cotxf(x)=(cosxsinx)=sin2xcos2xsin2x=1cot2xf(f1(x))=1cot2(arccotx)=1x2(f1(x))=11x2=11+x2

5b

Find: limx0+1x(1xx1)Solution:1x(1xx1)=xx1x=exlnx1xlimx0+xlnx==0exlnx1limx0+exlnx1x=Llimx0+(xlnx)exlnx=limx0+(lnx+1)limx0+exlnx==()1=limx0+1x(1xx1)=