Exam 2023B (B)

1

Let x>0Prove: arctan(xx+1)ln(x+1)>x+12x2+2x+1Proof:Let f(x)=arctan(xx+1)f(x)=(xx+1)1(xx+1)2+1=x+1x(x+1)212x2+2x+1x2+2x+1=12x2+2x+1Let g(x)=ln(x+1)g(x)=1x+1f(x)g(x)=x+12x2+2x+1f(x)g(x)=f(x)0g(x)0=f(x)f(0)g(x)g(0)By Langranges theorem: c(0,x):f(x)f(0)g(x)g(0)=f(c)g(c)Let h(x)=f(x)g(x)h(x)=2x2+2x+1(x+1)(4x+2)(2x2+2x+1)2=2x24x1(2x2+2x+1)2<0[c<xh(c)>h(x)]f(x)g(x)>h(x)arctan(xx+1)ln(x+1)>x+12x2+2x+1

2a

Let f be a function defined on (a,b)Let f be differentiable three times on (a,b)Let c(a,b):f(c)=0Prove or disprove: f(c)>0c is a local minimumProof:f(c)=limh0f(c+h)f(c)h=limh0f(c+h)h>0h0+f(c+h)>0εR>0:f is monotonically increasing on [c,c+εE]h0f(c+h)<0εL>0:f is monotonically decreasing on [cεL,c]ε=min(εL,εR)>0:x[cε,c+ε]:f(c)f(x)c is a local minimum of f

2b

Let f be a function defined on (a,b)Let f be differentiable three times on (a,b)Let c(a,b):f(c)=0Prove or disprove: c is a local maximumf(c)<0Disproof:f(x)=x4f(x)=4x3f(x)=12x20 is a local maximum of ff(0)=0

3a

Let an={3n=112(an1+7an1)n>1Prove that an converges and find limnanSolution:nN:an>0an+1an=7an22anBase case. 7<a13Induction step. Let 7<an3an+1an<0an+1<anan+1=an2+72anLet f(x)=x2+72xf is continuous and differentiable on (0,)f(x)=1272x2x>7f(x)>0f(x)>f(7)=7an>7an+1=f(an)>7nN:an>7an+1<anan is bounded and monotonically decreasinglimnan=LRlimnan+1=limnan2+72an=L2+72L=LL2=7L=±7an>7L7L=7

3b

Let a1,b1>0RLet an+1=an+bn2Let bn+1=anbnProve: limnan=limnbn=LRProof:Base case. a1>0,b1>0Induction step. Let an>0,bn>0an+1=an+bn2>0bn+1=anbn>0nN:an>0,bn>0an+bn2anbn=an2anbn+bn2=(anbn)22>0an+1>bn+1n>1N:bn<ann>1N:an+1<2an2=anan is monotonically decreasing and bounded from below by 0limnan=LRbn=2an+1anlimnbn=limn2an+1an=2LL=Llimnan=limnbn=LR

4a

n=1sinnnSolution:Let SN=n=1Nsinn2sin(12)SN=n=1N2sin(12)sinn=n=1N(cos(n12)cos(n+12))==cos(12)cos(N+12)SN=cos(12)cos(N+12)2sin(12)cos(12)12sin(12)SNcos(12)2sin(12)n=1sin(n) is bounded1n is monotonically decreasing and 1n0By Dirichlet’s test: n=1sinnn convergesn=1|sinnn|=n=1|sinn|nn=112n+X12n=11n divergesn=1|sinn|n also divergesn=1sinnn converges conditionally

4b

n=2(1)nln(n!)Solution:1ln(n!) is monotonically decreasing and 1ln(n!)0n=2(1)nln(n!) converges at least conditionally by the alternating series testn=2|(1)nln(n!)|=n=21ln(n!)k<nln(k)<ln(n)ln(n!)=ln(1)+ln(2)++ln(n)nlnn1ln(n!)1nlnnn=21nlnn divergesn=21ln(n!) also divergesn=2(1)nln(n!) coverges conditionally

5a

n=11(n+2)(n+4)Solution:1(n+2)(n+4)=12(n+4(n+2)(n+4)n+2(n+2)(n+4))=12(1n+21n+4)n=11(n+2)(n+4)=12n=1(1n+21n+4)2SN=1315+1416+1517++1N+11N+3+1N+21N+4==13+141N+31N+4SN=16+1812N+612N+816+18n=11(n+2)(n+4)=16+18=1448

5b

limn(e1/ne1/n)sin(1/n)Solution:Let t=1nlimt0(etet)sint=limt0(e2t1)sintetsint=limt0(e2t1)sint=limt0esintln(e2t1)limt0sintln(e2t1)=limt0tln(e2t1)sintt=limt0ln(e2t1)1t=Llimt02e2te2t11t2==limt02e2tt2e2t1=L2limt02e2tt20+2e2tt02e2t1=20=0limn(e1/ne1/n)sin(1/n)=0