Exam 2024 (A)

1a

Prove: x>32ln(x2)x+12>4x+1x2Proof:Let f(t)=2ln(t2)f(t)=2t2Let g(t)=t+12g(t)=12t+1f(t) is continuous on [3,) and differentiable on (3,)g(t) is continuous on [3,] and differentiable on (3,)By Lagrange’s theorem: c(3,x):f(x)f(3)g(x)g(3)=f(c)g(c)2ln(x2)2ln(1)x+12+42=2ln(x2)x+12=4c+1c2Let h(t)=4t+1t2h(t)=(2t+1(t2)4t+1)(t2)2=2t44t4t+1(t2)2=2t8<0t+1>0(t2)2>0<0h(t) is monotonically decreasing for t>3c<xh(c)>h(x)2ln(x2)x+12>4x+1x2

1b

Let f be a functionLet f be continuous on [a,b] and differentiable on (a,b)Prove or disprove: f is bounded on (a,b)Proof:Let f be unbounded on (a,b)nN:xn(a,b):f(xn)>n(a,b) is boundedBy Bolzano-Weierstrasse theorem xnkx(a,b)f is continuous on [a,b]f(xnk)f(x)Rf(xn)f(xnk)f(x)=Contradiction!f is bounded on (a,b)Note: This is Weierstrasse boundness theorem (lecture 23)

2a

Find: limn(1+cos(1n)sin(1n))n2sin(1/n)Solution:Let an=cos(1n)sin(1n)Let bn=n2sin(1n)sin(1n)sin0=01<cos(1n)<1cos(1n)sin(1n)0an1bnlimnanbn=elimn(an1)bnlimn(an1)bn=limncos(1n)sin(1n)n2sin(1n)==limnsin(1n)1nsin(1n)1ncos(1n)=1n0+1limnanbn=e1=e

2b

Find: limn(1+1n)(1)nSolution:Let an=(1+1n)(1)na2n=(1+12n)1a2n1=(1+12n1)1=2n12n=112n1{a2n1a2n11an1

3a

Determine whether series diverges or convergesand if converges, whether absolutely or conditionallyn=117(n!n)17Solution:Let an=17(n!n)17|an|=ann!=i=1nii=n2nii=n2nn2=(n2)n/2n!n(n2)n/2n=(n2)an17217/2n17/2n=117217/2n17/2=17217/2n=11n17/2 convergesn=1|an| convergesn=117(n!n)17 converges absolutely

3b

Determine whether series diverges or convergesand if converges, whether absolutely or conditionallyn=2(1)nln(nn)Solution:Let an=(1)nln(nn)|an|=1ln(nn)=1nlnnn=22n2nln(2n)=n=22nnln(2)2nn0n=22n|a2n| divergesn=2|an| diverges1ln(nn)=1nln(n) which is monotonically decreasing and 0By the Leibniz criterion: n=2(1)nln(nn) converges conditionally

4a

Let an={3n=112(an1+7an1)n>1Prove that an converges and find limnanSolution:nN:an>0an+1an=7an22anBase case. 7<a13Induction step. Let 7<an3an+1an<0an+1<anan+1=an2+72anLet f(x)=x2+72xf is continuous and differentiable on (0,)f(x)=1272x2x>7f(x)>0f(x)>f(7)=7an>7an+1=f(an)>7nN:an>7an+1<anan is bounded and monotonically decreasinglimnan=LRlimnan+1=limnan2+72an=L2+72L=LL2=7L=±7an>7L7L=7

4b

Let S,TR,STProve or disprove: sup(S)sup(T)Disproof:Let S=T=Rsup(S),sup(T)