Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Exam 2024 (A)
1a
Prove:
x
>
3
⟹
2
ln
(
x
−
2
)
x
+
1
−
2
>
4
x
+
1
x
−
2
Proof:
Let
f
(
t
)
=
2
ln
(
t
−
2
)
f
′
(
t
)
=
2
t
−
2
Let
g
(
t
)
=
t
+
1
−
2
g
′
(
t
)
=
1
2
t
+
1
f
(
t
)
is continuous on
[
3
,
∞
)
and differentiable on
(
3
,
∞
)
g
(
t
)
is continuous on
[
3
,
∞
]
and differentiable on
(
3
,
∞
)
⟹
By Lagrange’s theorem:
∃
c
∈
(
3
,
x
)
:
f
(
x
)
−
f
(
3
)
g
(
x
)
−
g
(
3
)
=
f
′
(
c
)
g
′
(
c
)
⟹
2
ln
(
x
−
2
)
−
2
ln
(
1
)
x
+
1
−
2
+
4
−
2
=
2
ln
(
x
−
2
)
x
+
1
−
2
=
4
c
+
1
c
−
2
Let
h
(
t
)
=
4
t
+
1
t
−
2
h
′
(
t
)
=
(
2
t
+
1
(
t
−
2
)
−
4
t
+
1
)
(
t
−
2
)
2
=
2
t
−
4
−
4
t
−
4
t
+
1
(
t
−
2
)
2
=
−
2
t
−
8
⏞
<
0
t
+
1
⏟
>
0
(
t
−
2
)
2
⏟
>
0
<
0
⟹
h
(
t
)
is monotonically decreasing for
t
>
3
c
<
x
⟹
h
(
c
)
>
h
(
x
)
⟹
2
ln
(
x
−
2
)
x
+
1
−
2
>
4
x
+
1
x
−
2
1b
Let
f
be a function
Let
f
be continuous on
[
a
,
b
]
and differentiable on
(
a
,
b
)
Prove or disprove:
f
is bounded on
(
a
,
b
)
Proof:
Let
f
be unbounded on
(
a
,
b
)
⟹
∀
n
∈
N
:
∃
x
n
∈
(
a
,
b
)
:
f
(
x
n
)
>
n
(
a
,
b
)
is bounded
⟹
By Bolzano-Weierstrasse theorem
∃
x
n
k
→
x
∈
(
a
,
b
)
f
is continuous on
[
a
,
b
]
⟹
f
(
x
n
k
)
→
f
(
x
)
∈
R
f
(
x
n
)
→
∞
⟹
f
(
x
n
k
)
→
∞
⟹
f
(
x
)
=
∞
−
Contradiction!
⟹
f
is bounded on
(
a
,
b
)
Note: This is Weierstrasse boundness theorem (lecture 23)
2a
Find:
lim
n
→
∞
(
1
+
cos
(
1
n
)
sin
(
1
n
)
)
n
2
sin
(
1
/
n
)
Solution:
Let
a
n
=
cos
(
1
n
)
sin
(
1
n
)
Let
b
n
=
n
2
sin
(
1
n
)
sin
(
1
n
)
→
sin
0
=
0
−
1
<
cos
(
1
n
)
<
1
⟹
cos
(
1
n
)
sin
(
1
n
)
→
0
⟹
a
n
→
1
b
n
→
∞
⟹
lim
n
→
∞
a
n
b
n
=
e
lim
n
→
∞
(
a
n
−
1
)
b
n
lim
n
→
∞
(
a
n
−
1
)
b
n
=
lim
n
→
∞
cos
(
1
n
)
sin
(
1
n
)
n
2
sin
(
1
n
)
=
=
lim
n
→
∞
sin
(
1
n
)
1
n
sin
(
1
n
)
1
n
cos
(
1
n
)
=
⏟
1
n
→
0
+
1
⟹
lim
n
→
∞
a
n
b
n
=
e
1
=
e
2b
Find:
lim
n
→
∞
(
1
+
1
n
)
(
−
1
)
n
Solution:
Let
a
n
=
(
1
+
1
n
)
(
−
1
)
n
a
2
n
=
(
1
+
1
2
n
)
→
1
a
2
n
−
1
=
(
1
+
1
2
n
−
1
)
−
1
=
2
n
−
1
2
n
=
1
−
1
2
n
→
1
{
a
2
n
→
1
a
2
n
−
1
→
1
⟹
a
n
→
1
3a
Determine whether series diverges or converges
and if converges, whether absolutely or conditionally
∑
n
=
1
∞
17
(
n
!
n
)
17
Solution:
Let
a
n
=
17
(
n
!
n
)
17
|
a
n
|
=
a
n
n
!
=
∏
i
=
1
n
i
≥
∏
i
=
n
2
n
i
≥
∏
i
=
n
2
n
n
2
=
(
n
2
)
n
/
2
⟹
n
!
n
≥
(
n
2
)
n
/
2
n
=
(
n
2
)
⟹
a
n
≤
17
⋅
2
17
/
2
n
17
/
2
∑
n
=
1
∞
17
⋅
2
17
/
2
n
17
/
2
=
17
⋅
2
17
/
2
⋅
∑
n
=
1
∞
1
n
17
/
2
converges
⟹
∑
n
=
1
∞
|
a
n
|
converges
⟹
∑
n
=
1
∞
17
(
n
!
n
)
17
converges absolutely
3b
Determine whether series diverges or converges
and if converges, whether absolutely or conditionally
∑
n
=
2
∞
(
−
1
)
n
ln
(
n
n
)
Solution:
Let
a
n
=
(
−
1
)
n
ln
(
n
n
)
|
a
n
|
=
1
ln
(
n
n
)
=
1
n
ln
n
∑
n
=
2
∞
2
n
2
n
ln
(
2
n
)
=
∑
n
=
2
∞
2
n
n
ln
(
2
)
2
n
n
↛
0
⟹
∑
n
=
2
∞
2
n
|
a
2
n
|
diverges
⟹
∑
n
=
2
∞
|
a
n
|
diverges
1
ln
(
n
n
)
=
1
n
ln
(
n
)
which is monotonically decreasing and
→
0
⟹
By the Leibniz criterion:
∑
n
=
2
∞
(
−
1
)
n
ln
(
n
n
)
converges conditionally
4a
Let
a
n
=
{
3
n
=
1
1
2
(
a
n
−
1
+
7
a
n
−
1
)
n
>
1
Prove that
a
n
converges and find
lim
n
→
∞
a
n
Solution:
∀
n
∈
N
:
a
n
>
0
a
n
+
1
−
a
n
=
7
−
a
n
2
2
a
n
Base case.
7
<
a
1
≤
3
Induction step. Let
7
<
a
n
≤
3
⟹
a
n
+
1
−
a
n
<
0
⟹
a
n
+
1
<
a
n
a
n
+
1
=
a
n
2
+
7
2
a
n
Let
f
(
x
)
=
x
2
+
7
2
x
f
is continuous and differentiable on
(
0
,
∞
)
f
′
(
x
)
=
1
2
−
7
2
x
2
x
>
7
⟹
f
′
(
x
)
>
0
⟹
f
(
x
)
>
f
(
7
)
=
7
a
n
>
7
⟹
a
n
+
1
=
f
(
a
n
)
>
7
⟹
∀
n
∈
N
:
a
n
>
7
∧
a
n
+
1
<
a
n
⟹
a
n
is bounded and monotonically decreasing
⟹
lim
n
→
∞
a
n
=
L
∈
R
⟹
lim
n
→
∞
a
n
+
1
=
lim
n
→
∞
a
n
2
+
7
2
a
n
=
L
2
+
7
2
L
=
L
⟹
L
2
=
7
⟹
L
=
±
7
a
n
>
7
⟹
L
≥
7
⟹
L
=
7
4b
Let
S
,
T
⊆
R
,
S
⊆
T
Prove or disprove:
s
u
p
(
S
)
≤
s
u
p
(
T
)
Disproof:
Let
S
=
T
=
R
∄
s
u
p
(
S
)
,
s
u
p
(
T
)