Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Exam 2024 (B)
1a
Let
x
>
0
Prove:
arctan
(
x
x
+
1
)
ln
(
x
+
1
)
>
x
+
1
2
x
2
+
2
x
+
1
Proof:
Let
f
(
x
)
=
arctan
(
x
x
+
1
)
f
′
(
x
)
=
(
x
x
+
1
)
′
⋅
1
(
x
x
+
1
)
2
+
1
=
x
+
1
−
x
(
x
+
1
)
2
⋅
1
2
x
2
+
2
x
+
1
x
2
+
2
x
+
1
=
1
2
x
2
+
2
x
+
1
Let
g
(
x
)
=
ln
(
x
+
1
)
g
′
(
x
)
=
1
x
+
1
f
′
(
x
)
g
′
(
x
)
=
x
+
1
2
x
2
+
2
x
+
1
f
(
x
)
g
(
x
)
=
f
(
x
)
−
0
g
(
x
)
−
0
=
f
(
x
)
−
f
(
0
)
g
(
x
)
−
g
(
0
)
By Langranges theorem:
∃
c
∈
(
0
,
x
)
:
f
(
x
)
−
f
(
0
)
g
(
x
)
−
g
(
0
)
=
f
′
(
c
)
g
′
(
c
)
Let
h
(
x
)
=
f
′
(
x
)
g
′
(
x
)
h
′
(
x
)
=
2
x
2
+
2
x
+
1
−
(
x
+
1
)
(
4
x
+
2
)
(
2
x
2
+
2
x
+
1
)
2
=
−
2
x
2
−
4
x
−
1
(
2
x
2
+
2
x
+
1
)
2
<
0
⟹
[
c
<
x
⟹
h
(
c
)
>
h
(
x
)
]
⟹
f
(
x
)
g
(
x
)
>
h
(
x
)
⟹
arctan
(
x
x
+
1
)
ln
(
x
+
1
)
>
x
+
1
2
x
2
+
2
x
+
1
1b
Let
f
:
R
→
R
be a function
Let
f
be continuous on
R
Prove or disprove:
f
(
x
)
=
x
has a solution
⟺
f
(
f
(
x
)
)
=
x
has a solution
Proof:
Let
∃
c
∈
R
:
f
(
c
)
=
c
⟹
f
(
f
(
c
)
)
=
f
(
c
)
=
c
Let
∃
c
∈
R
:
f
(
f
(
c
)
)
=
c
Let
g
(
x
)
=
f
(
x
)
−
x
g
is continuous on
R
g
(
c
)
=
f
(
c
)
−
c
g
(
f
(
c
)
)
=
f
(
f
(
c
)
)
−
f
(
c
)
=
c
−
f
(
c
)
If
f
(
c
)
−
c
=
0
then
f
(
c
)
=
c
If
f
(
c
)
−
c
≠
0
⟹
g
(
c
)
⋅
g
(
f
(
c
)
)
<
0
⟹
By the intermediate value theorem:
∃
d
∈
(
c
,
f
(
c
)
)
:
g
(
d
)
=
0
⟹
f
(
d
)
=
d
2a
Find:
lim
n
→
∞
(
e
1
/
n
−
e
−
1
/
n
)
sin
(
1
/
n
)
Solution:
Let
t
=
1
n
(
e
t
−
e
−
t
)
sin
t
=
(
e
2
t
−
1
e
t
)
sin
t
=
e
ln
(
e
2
t
−
1
e
t
)
sin
t
=
e
ln
(
e
2
t
−
1
)
sin
t
−
ln
(
e
t
)
sin
t
=
=
e
ln
(
e
2
t
−
1
)
sin
t
−
t
sin
t
lim
t
→
0
ln
(
e
2
t
−
1
)
1
sin
t
=
lim
t
→
0
t
ln
(
e
2
t
−
1
)
t
sin
t
=
lim
t
→
0
ln
(
e
2
t
−
1
)
1
t
=
=
L
lim
t
→
0
2
e
2
t
e
2
t
−
1
−
1
t
2
=
lim
t
→
0
2
e
2
t
t
2
1
−
e
2
t
=
L
lim
t
→
0
4
e
2
t
t
2
+
4
e
2
t
t
1
−
2
e
2
t
⏟
→
2
→
0
+
0
−
1
=
0
2b
Find:
lim
n
→
∞
(
1
+
1
n
)
(
−
1
)
n
⋅
n
Solution:
Let
a
n
=
(
1
+
1
n
)
(
−
1
)
n
⋅
n
a
2
n
=
(
1
+
1
2
n
)
2
n
→
e
a
2
n
−
1
=
(
1
+
1
2
n
−
1
)
−
(
2
n
−
1
)
=
1
(
1
+
1
2
n
−
1
)
2
n
−
1
→
1
e
lim
n
→
∞
a
2
n
≠
lim
n
→
∞
a
2
n
−
1
⟹
∄
lim
n
→
∞
a
n
3a
Let
a
n
be monotonically non-increasing
Prove or disprove:
∑
n
=
1
∞
a
n
converges
⟹
n
a
n
→
0
Proof:
Let
∑
n
=
1
∞
a
n
converges
⟹
∑
n
=
1
∞
2
n
a
2
n
converges
⟹
a
n
→
0
and
2
n
a
2
n
→
0
∀
n
∈
N
:
∃
k
∈
N
:
2
k
≤
n
≤
2
k
+
1
a
n
is monotonically non-increasing
⟹
a
2
k
+
1
≤
a
n
≤
a
2
k
⟹
2
k
a
2
k
+
1
≤
n
a
n
≤
2
k
+
1
a
2
k
⟹
1
2
2
k
+
1
a
2
k
+
1
⏟
→
0
≤
n
a
n
≤
2
⋅
2
k
a
2
k
⏟
→
0
⟹
n
a
n
→
0
3b
Let
a
n
be monotonically non-increasing
Prove or disprove:
n
a
n
→
0
⟹
∑
n
=
1
∞
a
n
converges
Disproof:
Let
a
n
=
1
n
ln
n
n
a
n
=
1
ln
n
→
0
∑
n
=
1
∞
2
n
a
2
n
=
∑
n
=
1
∞
2
n
2
n
n
ln
(
2
)
=
1
ln
(
2
)
∑
n
=
1
∞
1
n
diverges
⟹
∑
n
=
1
∞
a
n
diverges
4a
Let
a
1
,
b
1
>
0
∈
R
Let
a
n
+
1
=
a
n
+
b
n
2
Let
b
n
+
1
=
a
n
b
n
Prove:
lim
n
→
∞
a
n
=
lim
n
→
∞
b
n
=
L
∈
R
Proof:
Base case.
a
1
>
0
,
b
1
>
0
Induction step. Let
a
n
>
0
,
b
n
>
0
a
n
+
1
=
a
n
+
b
n
2
>
0
b
n
+
1
=
a
n
b
n
>
0
⟹
∀
n
∈
N
:
a
n
>
0
,
b
n
>
0
a
n
+
b
n
2
−
a
n
b
n
=
a
n
−
2
a
n
b
n
+
b
n
2
=
(
a
n
−
b
n
)
2
2
>
0
⟹
a
n
+
1
>
b
n
+
1
⟹
∀
n
>
1
∈
N
:
b
n
<
a
n
⟹
∀
n
>
1
∈
N
:
a
n
+
1
<
2
a
n
2
=
a
n
⟹
a
n
is monotonically decreasing and bounded from below by
0
⟹
∃
lim
n
→
∞
a
n
=
L
∈
R
b
n
=
2
a
n
+
1
−
a
n
⟹
lim
n
→
∞
b
n
=
lim
n
→
∞
2
a
n
+
1
−
a
n
=
2
L
−
L
=
L
⟹
lim
n
→
∞
a
n
=
lim
n
→
∞
b
n
=
L
∈
R
4b
Let
f
be a function defined on
(
a
,
b
)
Let
f
be differentiable three times on
(
a
,
b
)
Let
∃
c
∈
(
a
,
b
)
:
f
′
(
c
)
=
0
Prove or disprove:
f
″
(
c
)
>
0
⟹
c
is a local minimum
Proof:
f
″
(
c
)
=
lim
h
→
0
f
′
(
c
+
h
)
−
f
′
(
c
)
h
=
lim
h
→
0
f
′
(
c
+
h
)
h
>
0
h
→
0
+
⟹
f
′
(
c
+
h
)
>
0
⟹
∃
ε
R
>
0
:
f
is monotonically increasing on
[
c
,
c
+
ε
E
]
h
→
0
−
⟹
f
′
(
c
+
h
)
<
0
⟹
∃
ε
L
>
0
:
f
is monotonically decreasing on
[
c
−
ε
L
,
c
]
⟹
∃
ε
=
m
i
n
(
ε
L
,
ε
R
)
>
0
:
∀
x
∈
[
c
−
ε
,
c
+
ε
]
:
f
(
c
)
≤
f
(
x
)
⟹
c
is a local minimum of
f