Exam 2024 (B)

1a

Let x>0Prove: arctan(xx+1)ln(x+1)>x+12x2+2x+1Proof:Let f(x)=arctan(xx+1)f(x)=(xx+1)1(xx+1)2+1=x+1x(x+1)212x2+2x+1x2+2x+1=12x2+2x+1Let g(x)=ln(x+1)g(x)=1x+1f(x)g(x)=x+12x2+2x+1f(x)g(x)=f(x)0g(x)0=f(x)f(0)g(x)g(0)By Langranges theorem: c(0,x):f(x)f(0)g(x)g(0)=f(c)g(c)Let h(x)=f(x)g(x)h(x)=2x2+2x+1(x+1)(4x+2)(2x2+2x+1)2=2x24x1(2x2+2x+1)2<0[c<xh(c)>h(x)]f(x)g(x)>h(x)arctan(xx+1)ln(x+1)>x+12x2+2x+1

1b

Let f:RR be a functionLet f be continuous on RProve or disprove: f(x)=x has a solutionf(f(x))=x has a solutionProof:Let cR:f(c)=cf(f(c))=f(c)=cLet cR:f(f(c))=cLet g(x)=f(x)xg is continuous on Rg(c)=f(c)cg(f(c))=f(f(c))f(c)=cf(c)If f(c)c=0 then f(c)=cIf f(c)c0g(c)g(f(c))<0By the intermediate value theorem: d(c,f(c)):g(d)=0f(d)=d

2a

Find: limn(e1/ne1/n)sin(1/n)Solution:Let t=1n(etet)sint=(e2t1et)sint=eln(e2t1et)sint=eln(e2t1)sintln(et)sint==eln(e2t1)sinttsintlimt0ln(e2t1)1sint=limt0tln(e2t1)tsint=limt0ln(e2t1)1t==Llimt02e2te2t11t2=limt02e2tt21e2t=Llimt04e2tt2+4e2tt12e2t20+01=0

2b

Find: limn(1+1n)(1)nnSolution:Let an=(1+1n)(1)nna2n=(1+12n)2nea2n1=(1+12n1)(2n1)=1(1+12n1)2n11elimna2nlimna2n1limnan

3a

Let an be monotonically non-increasingProve or disprove: n=1an convergesnan0Proof:Let n=1an convergesn=12na2n convergesan0 and 2na2n0nN:kN:2kn2k+1an is monotonically non-increasinga2k+1ana2k2ka2k+1nan2k+1a2k122k+1a2k+10nan22ka2k0nan0

3b

Let an be monotonically non-increasingProve or disprove: nan0n=1an convergesDisproof:Let an=1nlnnnan=1lnn0n=12na2n=n=12n2nnln(2)=1ln(2)n=11n divergesn=1an diverges

4a

Let a1,b1>0RLet an+1=an+bn2Let bn+1=anbnProve: limnan=limnbn=LRProof:Base case. a1>0,b1>0Induction step. Let an>0,bn>0an+1=an+bn2>0bn+1=anbn>0nN:an>0,bn>0an+bn2anbn=an2anbn+bn2=(anbn)22>0an+1>bn+1n>1N:bn<ann>1N:an+1<2an2=anan is monotonically decreasing and bounded from below by 0limnan=LRbn=2an+1anlimnbn=limn2an+1an=2LL=Llimnan=limnbn=LR

4b

Let f be a function defined on (a,b)Let f be differentiable three times on (a,b)Let c(a,b):f(c)=0Prove or disprove: f(c)>0c is a local minimumProof:f(c)=limh0f(c+h)f(c)h=limh0f(c+h)h>0h0+f(c+h)>0εR>0:f is monotonically increasing on [c,c+εE]h0f(c+h)<0εL>0:f is monotonically decreasing on [cεL,c]ε=min(εL,εR)>0:x[cε,c+ε]:f(c)f(x)c is a local minimum of f