Exam 2025 (A)

1a

Prove: (arccot x)=11+x2

1b

Find limx0+1x(1xx1)

2a

Let an converges,an=SLet bn be a series obtained by changing order of anProve or disprove: bn=S

3a

n=1(2n)!4n(n!)2

3b

n=1(nn1)

4a

Let f be a differentiable function on RLet {an},{bn}R:anbn0Prove or disprove: f(an)f(bn)0

5a

limnnn!n

5b

a1=69420an+1=13(2an+5an2)Find limnan