Infi-1 10

Infi-1 10

Cauchy's sequence #definition

ε>0Nε:n,m>Nε:|anam|<ε

Cauchy's criterion #theorem

{an}Ran convergesan is a Cauchy’s sequenceProof:Let anLε>0Nε:n>Nε:|anL|<ε2Let mn|anam|=|anLam+L||anL|<ε2+|Lam|=|amL|<ε2|anam|<εan is a Cauchy’s sequenceLet an be a Cauchy’s sequence1.Cauchy’s sequence is boundedProof:By definition of the limit: ε=7:Nε:n,m>Nε:|anam|<7Let z=aNε+1Then 7<anz<7n>Nε:z7anz+7A={a1,a2,a3,,aNε} is a finite setm=min(A),M=max(A)nN:min(m,z7)anmax(M,z+7)sequence is bounded2.If sequence is bounded, then there exists a convergent subsequence aknaknLk3.Limit of a subsequence is a limit of the whole sequence, if such existsε>0Na:n,m>Na:|anam|<ε2ε>0Nk:n>Nk:|aknLk|<ε2Let n>Nε=max(Na,Nk)|anLk|=|anaknLk+akn||anakn|<ε2+|aknLk|<ε2<εanLk4.Proof for 3. via limanLet liman=T>LkThen amnTN1:n>N1:|aknLk|<TL4N2:n>N2:|amnT|<TL4N3:n,m>N3:|anam|<TL4Nε=max(N1,N2,N3):n,m>Nε:|aknLk|<TL4,|amnT|<TL4,|anam|<TL4LTL4<akn<L+TL4TTL4<amn<T+TL45LT4<akn<T+3L43T+L4<amn<5TL4amnakn>3T+L4akn>3T+L4T+3L4=TL2>TL4

Series (טורים) #definition

Series are infinite sums, corresponding to sequencesFor example:an=12nSn=9n=112n=12+14+18+