Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Infi-1 10
Infi-1 10
Cauchy's sequence
#definition
∀
ε
>
0
∃
N
ε
:
∀
n
,
m
>
N
ε
:
|
a
n
−
a
m
|
<
ε
Cauchy's criterion
#theorem
{
a
n
}
⊆
R
a
n
converges
⟺
a
n
is a Cauchy’s sequence
Proof:
Let
a
n
→
L
∀
ε
>
0
∃
N
ε
:
∀
n
>
N
ε
:
|
a
n
−
L
|
<
ε
2
Let
m
≥
n
|
a
n
−
a
m
|
=
|
a
n
−
L
−
a
m
+
L
|
≤
|
a
n
−
L
|
⏟
<
ε
2
+
|
L
−
a
m
|
⏟
=
|
a
m
−
L
|
<
ε
2
⟹
|
a
n
−
a
m
|
<
ε
⟺
a
n
is a Cauchy’s sequence
Let
a
n
be a Cauchy’s sequence
1.
Cauchy’s sequence is bounded
Proof:
By definition of the limit:
∃
ε
=
7
:
∃
N
ε
:
∀
n
,
m
>
N
ε
:
|
a
n
−
a
m
|
<
7
Let
z
=
a
⌈
N
ε
⌉
+
1
Then
−
7
<
a
n
−
z
<
7
⟺
∀
n
>
N
ε
:
z
−
7
≤
a
n
≤
z
+
7
A
=
{
a
1
,
a
2
,
a
3
,
…
,
a
⌈
N
ε
⌉
}
is a finite set
⟹
∃
m
=
m
i
n
(
A
)
,
M
=
m
a
x
(
A
)
⟹
∀
n
∈
N
:
m
i
n
(
m
,
z
−
7
)
≤
a
n
≤
m
a
x
(
M
,
z
+
7
)
−
sequence is bounded
2.
If sequence is bounded, then there exists a convergent subsequence
a
k
n
∃
a
k
n
→
L
k
3.
Limit of a subsequence is a limit of the whole sequence, if such exists
∀
ε
>
0
∃
N
a
:
∀
n
,
m
>
N
a
:
|
a
n
−
a
m
|
<
ε
2
∀
ε
>
0
∃
N
k
:
∀
n
>
N
k
:
|
a
k
n
−
L
k
|
<
ε
2
Let
n
>
N
ε
=
m
a
x
(
N
a
,
N
k
)
|
a
n
−
L
k
|
=
|
a
n
−
a
k
n
−
L
k
+
a
k
n
|
≤
|
a
n
−
a
k
n
|
⏟
<
ε
2
+
|
a
k
n
−
L
k
|
⏟
<
ε
2
<
ε
⟺
a
n
→
L
k
4.
Proof for 3. via
lim
―
a
n
Let
lim
―
a
n
=
T
>
L
k
Then
∃
a
m
n
→
T
∃
N
1
:
∀
n
>
N
1
:
|
a
k
n
−
L
k
|
<
T
−
L
4
∃
N
2
:
∀
n
>
N
2
:
|
a
m
n
−
T
|
<
T
−
L
4
∃
N
3
:
∀
n
,
m
>
N
3
:
|
a
n
−
a
m
|
<
T
−
L
4
∃
N
ε
=
m
a
x
(
N
1
,
N
2
,
N
3
)
:
∀
n
,
m
>
N
ε
:
|
a
k
n
−
L
k
|
<
T
−
L
4
,
|
a
m
n
−
T
|
<
T
−
L
4
,
|
a
n
−
a
m
|
<
T
−
L
4
L
−
T
−
L
4
<
a
k
n
<
L
+
T
−
L
4
T
−
T
−
L
4
<
a
m
n
<
T
+
T
−
L
4
5
L
−
T
4
<
a
k
n
<
T
+
3
L
4
3
T
+
L
4
<
a
m
n
<
5
T
−
L
4
a
m
n
−
a
k
n
>
3
T
+
L
4
−
a
k
n
>
3
T
+
L
4
−
T
+
3
L
4
=
T
−
L
2
>
T
−
L
4
Series (טורים)
#definition
Series are infinite sums, corresponding to sequences
For example:
a
n
=
1
2
n
S
n
=
9
∑
n
=
1
∞
1
2
n
=
1
2
+
1
4
+
1
8
+
…