Infi-1 12

Infi-1 12

Partial sum #definition

SN=n=1Nann=1=limNSN

Operations on series #lemma

n=1NCan=Cn=1Nann=1Nan+n=1Nbn=n=1N(an+bn)=CNAN=n=1NanBN=n=1NbnANL,BNMCN=n=1N(an+bn)=a1+b1++aN+bN==a1+a2++aNn=1Nan+b1+b2++bNn=1Nbn=AN+BNL+M

Necessary convergence condition #lemma

n=1anLan0SN=n=1Nan,SNLSNSN1=aNSNSN1LL=0aN0aN0n=1anL

Number e #definition

(1+an)nea

"Better" Harmonic series #theorem

n=11naLa>1

Necessary and sufficient convergence condition #theorem

n=1anLSN is a Cauchy’s sequence(ε>0:Nε:N,M>Nε:|SNSM|<ε)If M>N:SM=SN+n=N+1Man|SNSM|<ε|n=N+1Man|<ε

Convergence tests

Direct comparison test #theorem

an,bn:0anbnbnLanManMbnLProof:0anANAN1=aN0AN>ANAN is monotonically non-descendingn=1Nbn=BNbnLC:BNCANBNCAN<CAN is monotonically non-descending and upper-boundeedANM

Limit comparison test #theorem

an,bn0an,bnlimnanbn=LL>0(anM1bnM2)L=0(anM1bnM2)L=(anM1bnM2)