Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Infi-1 12
Infi-1 12
Partial sum
#definition
S
N
=
∑
n
=
1
N
a
n
∑
n
=
1
∞
=
lim
N
→
∞
S
N
Operations on series
#lemma
∑
n
=
1
N
C
a
n
=
C
∑
n
=
1
N
a
n
∑
n
=
1
N
a
n
+
∑
n
=
1
N
b
n
=
∑
n
=
1
N
(
a
n
+
b
n
)
=
C
N
A
N
=
∑
n
=
1
N
a
n
B
N
=
∑
n
=
1
N
b
n
A
N
→
L
,
B
N
→
M
C
N
=
∑
n
=
1
N
(
a
n
+
b
n
)
=
a
1
+
b
1
+
⋯
+
a
N
+
b
N
=
=
a
1
+
a
2
+
⋯
+
a
N
⏟
∑
n
=
1
N
a
n
+
b
1
+
b
2
+
⋯
+
b
N
⏟
∑
n
=
1
N
b
n
=
A
N
+
B
N
→
L
+
M
Necessary convergence condition
#lemma
∑
n
=
1
∞
a
n
→
L
⟹
a
n
→
0
S
N
=
∑
n
=
1
N
a
n
,
S
N
→
L
S
N
−
S
N
−
1
=
a
N
S
N
−
S
N
−
1
→
L
−
L
=
0
⟹
a
N
→
0
a
N
↛
0
⟹
∑
n
=
1
∞
a
n
↛
L
Number e
#definition
(
1
+
a
n
)
n
→
e
a
"Better" Harmonic series
#theorem
∑
n
=
1
∞
1
n
a
→
L
⟺
a
>
1
Necessary and sufficient convergence condition
#theorem
∑
n
=
1
∞
a
n
→
L
⟺
S
N
is a Cauchy’s sequence
(
∀
ε
>
0
:
∃
N
ε
:
∀
N
,
M
>
N
ε
:
|
S
N
−
S
M
|
<
ε
)
If
M
>
N
:
S
M
=
S
N
+
∑
n
=
N
+
1
M
a
n
|
S
N
−
S
M
|
<
ε
|
∑
n
=
N
+
1
M
a
n
|
<
ε
Convergence tests
Direct comparison test
#theorem
∑
a
n
,
∑
b
n
:
0
≤
a
n
≤
b
n
∑
b
n
→
L
⟹
∑
a
n
→
M
∑
a
n
↛
M
⟹
∑
b
n
↛
L
Proof:
0
≤
a
n
⟹
A
N
−
A
N
−
1
=
a
N
≥
0
A
N
>
A
N
⟹
A
N
is monotonically non-descending
∑
n
=
1
N
b
n
=
B
N
∑
b
n
→
L
⟹
∃
C
:
B
N
≤
C
A
N
≤
B
N
≤
C
⟹
A
N
<
C
⟹
A
N
is monotonically non-descending and upper-boundeed
⟹
A
N
→
M
Limit comparison test
#theorem
∑
a
n
,
∑
b
n
0
≤
a
n
,
b
n
∃
lim
n
→
∞
a
n
b
n
=
L
L
>
0
⟹
(
∑
a
n
→
M
1
⟺
∑
b
n
→
M
2
)
L
=
0
⟹
(
∑
a
n
→
M
1
⟸
∑
b
n
→
M
2
)
L
=
∞
⟹
(
∑
a
n
→
M
1
⟹
∑
b
n
→
M
2
)