Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Infi-1 13
Infi-1 13
lim
n
→
∞
a
n
=
L
⟺
∀
K
<
L
,
W
>
L
:
∃
N
ε
:
∀
n
>
N
ε
:
K
<
a
n
<
W
Let
ε
=
m
i
n
(
L
−
K
2
,
W
−
L
2
)
∃
N
ε
:
∀
n
>
N
ε
:
K
<
L
−
ε
<
a
n
<
L
+
ε
<
W
Proof for limit comparison test
0
≤
a
n
,
b
n
lim
n
→
∞
a
n
b
n
=
L
Proof for 1.
L
>
0
⟹
1
e
L
<
a
n
b
n
<
e
L
1
e
L
b
n
≤
a
n
≤
e
L
b
n
1.
∑
a
n
→
M
1
⟹
∑
1
e
b
n
→
M
′
⟹
∑
b
n
→
M
2
2.
∑
b
n
→
M
2
⟹
∑
e
L
b
n
→
M
′
⟹
∑
a
n
→
M
1
1.
and
2.
⟹
∑
a
n
→
M
1
⟺
∑
b
n
→
M
2
Proof for 2.
L
=
0
,
∑
b
n
→
M
2
a
n
b
n
→
0
⟹
a
n
b
n
<
7
⟹
a
n
<
7
b
n
∑
b
n
→
M
2
⟹
∑
7
b
n
→
7
M
2
⟹
∑
a
n
→
M
1
Proof for 3.
L
=
∞
,
∑
a
n
→
M
1
a
n
b
n
→
∞
⟹
a
n
b
n
>
420
⟹
a
n
>
420
b
n
∑
a
n
→
M
1
⟹
∑
420
b
n
→
M
′
⟹
∑
b
n
→
M
2
Convergence tests
Root test (nth root test, Cauchy's criterion)
#theorem
Let
L
=
lim
n
→
∞
|
a
n
|
n
L
>
1
⟹
∑
a
n
↛
M
L
<
1
⟹
∑
|
a
n
|
→
M
L
=
1
⟹
Test is inconclusive
Proof:
Let
lim
n
→
∞
―
|
a
n
|
n
⟹
∃
a
k
n
:
|
a
k
n
|
k
n
→
L
If
L
>
1
⟹
L
>
L
+
1
2
>
1
⟹
|
a
k
n
|
k
n
≥
L
+
1
2
⟺
|
a
k
n
|
≥
(
L
+
1
2
)
k
n
L
+
1
2
>
1
⟹
(
L
+
1
2
)
k
n
→
∞
⟹
|
a
k
n
|
→
∞
⟹
a
k
n
↛
0
⟹
a
n
↛
0
⟹
∑
a
n
↛
M
If
L
<
1
⟹
L
<
L
+
1
2
|
a
k
n
|
k
n
→
L
⟹
|
a
n
|
n
≤
L
+
1
2
⟹
|
a
n
|
≤
(
L
+
1
2
)
n
∑
(
L
+
1
2
)
n
→
M
′
⟹
∑
|
a
n
|
→
M
Ratio test (d'Alembert's criterion)
#theorem
Let
L
=
lim
n
→
∞
|
a
n
+
1
a
n
|
L
>
1
⟹
∑
a
n
↛
M
L
<
1
⟹
∑
|
a
n
|
→
M