Infi-1 15

Infi-1 15

Bounded series #definition

Series are called bounded if the sequence of it’s partial sums is boundedM:NN:|n=1N|M

Dirichlet's test #theorem

bn is boundedan monotonically non-increasing,an0ThenbnanM1Example:(1)nn=(1)n1n|(1)n|11n0(1)nnM1Proof:an0 and an is monotonically non-increasingnN:an0bn is boundedSN=n=1Nbn is boundedanbnLε>0:Nε:N,M>NεN:|n=M+1Nanbn|<ε|n=M+1Nanbn|=|n=M+1Nan(SnSn1)|=|n=M+1NanSnn=M+1NanSn1|==|SMaM+1+n=M+1N1Sn(anan+1)+SNaN||SMaM+1|+n=M+1N1|Sn(anan+1)|+|SNaN|==|SM||aM+1|+n=M+1N1|Sn||(anan+1)|+|SN||aN||Sn|KaN,aM+10aM+1aM+2aM+1aM+20|SM||aM+1|+n=M+1N1|Sn||(anan+1)|+|SN||aN|K(aM+1+n=M+1N(anan+1)+aN)|n=M+1Nanbn|K(aM+1+aM+1aM+2++aN1aN+aN)==K2aM+1|n=M+1Nanbn|2KaM+1ε>0:Nε:M>Nε:|aM+1|<ε2Kε>0:Nε:M>Nε:|n=M+1Nanbn|2Kam+1<2Kε2K=ε
(1)n,sin(n),cos(n) are bounded seriessin(n) is boundedsin(n)n=(sin(n)1n0)M1