Infi-1 16

Infi-1 16

SN=n=1Nsin(n)=sin(1)+sin(2)++sin(N)2sin(x)sin(y)=cos(xy)cos(x+y)2sin(1)SN=2sin(1)sin(1)+2sin(1)sin(2)++2sin(1)sin(N)==cos(0)cos(2)+cos(1)cos(3)+cos(2)cos(4)++cos(N1)cos(N+1)==cos(0)+cos(1)cos(N)cos(N+1)SN=cos(0)+cos(1)cos(N)cos(N+1)2sin(1)2cos(N)cos(N+1)2cos(0)+cos(1)22sin(1)SNcos(0)+cos(1)+22sin(1)

Alternating series test (Leibniz criterion) #theorem

(1)nan is monotonically non-increasing and an0(1)nanM1

Alternating series remainder #definition

rN=anSN=n=N+1anSNanrN0
(1)n+1n=112+1314+S4=112+1314r4=1516+1715|rN||aN+1|

Somewhere in the future

ln(2)=(1)n+1n
(1)n=1+11+11+==(1+1)+(1+1)+=0==1+(11)+(11)+(11)+=1==1+(1+1)+(1+1)+(1+1)+=10=1=1???In non-convergent series grouping or changing order is not allowed
(1)n+1n=aa=112+1314+(11214)+(131618)++(12n+114n+214n+4)==(1214)++(14n+214n+4)=12(112+1314+15)=12aIn convergent series changing order is not allowed
|an|M1It is allowed to change the order of terms in absolutely convergent series

Riemann's theorem #theorem

If series converge conditionally, then for all wR exists an order of terms such thatanw