Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Infi-1 16
Infi-1 16
S
N
=
∑
n
=
1
N
sin
(
n
)
=
sin
(
1
)
+
sin
(
2
)
+
⋯
+
sin
(
N
)
2
sin
(
x
)
sin
(
y
)
=
cos
(
x
−
y
)
−
cos
(
x
+
y
)
2
sin
(
1
)
S
N
=
2
sin
(
1
)
sin
(
1
)
+
2
sin
(
1
)
sin
(
2
)
+
⋯
+
2
sin
(
1
)
sin
(
N
)
=
=
cos
(
0
)
−
cos
(
2
)
+
cos
(
1
)
−
cos
(
3
)
+
cos
(
2
)
−
cos
(
4
)
+
⋯
+
cos
(
N
−
1
)
−
cos
(
N
+
1
)
=
=
cos
(
0
)
+
cos
(
1
)
−
cos
(
N
)
−
cos
(
N
+
1
)
⟹
S
N
=
cos
(
0
)
+
cos
(
1
)
−
cos
(
N
)
−
cos
(
N
+
1
)
2
sin
(
1
)
−
2
≤
−
cos
(
N
)
−
cos
(
N
+
1
)
≤
2
⟹
cos
(
0
)
+
cos
(
1
)
−
2
2
sin
(
1
)
≤
S
N
≤
cos
(
0
)
+
cos
(
1
)
+
2
2
sin
(
1
)
Alternating series test (Leibniz criterion)
#theorem
∑
(
−
1
)
n
a
n
is monotonically non-increasing and
a
n
→
0
∑
(
−
1
)
n
a
n
→
M
1
Alternating series remainder
#definition
r
N
=
∑
a
n
−
S
N
=
∑
n
=
N
+
1
∞
a
n
S
N
→
∑
a
n
⟹
r
N
→
0
∑
(
−
1
)
n
+
1
n
=
1
−
1
2
+
1
3
−
1
4
+
…
S
4
=
1
−
1
2
+
1
3
−
1
4
r
4
=
1
5
−
1
6
+
1
7
−
⋯
≤
1
5
|
r
N
|
≤
|
a
N
+
1
|
Somewhere in the future
ln
(
2
)
=
∑
(
−
1
)
n
+
1
n
∑
(
−
1
)
n
=
−
1
+
1
−
1
+
1
−
1
+
⋯
=
=
(
−
1
+
1
)
+
(
−
1
+
1
)
+
⋯
=
0
=
=
−
1
+
(
1
−
1
)
+
(
1
−
1
)
+
(
1
−
1
)
+
⋯
=
−
1
=
=
1
+
(
−
1
+
1
)
+
(
−
1
+
1
)
+
(
−
1
+
1
)
+
⋯
=
1
0
=
−
1
=
1
?
?
?
⟹
In non-convergent series grouping or changing order is not allowed
∑
(
−
1
)
n
+
1
n
=
a
a
=
1
−
1
2
+
1
3
−
1
4
+
…
(
1
−
1
2
−
1
4
)
+
(
1
3
−
1
6
−
1
8
)
+
⋯
+
(
1
2
n
+
1
−
1
4
n
+
2
−
1
4
n
+
4
)
=
=
(
1
2
−
1
4
)
+
⋯
+
(
1
4
n
+
2
−
1
4
n
+
4
)
=
1
2
(
1
−
1
2
+
1
3
−
1
4
+
1
5
−
…
)
=
1
2
a
⟹
In convergent series changing order is not allowed
∑
|
a
n
|
→
M
1
It is allowed to change the order of terms in absolutely convergent series
Riemann's theorem
#theorem
If series converge conditionally, then for all
w
∈
R
exists an order of terms such that
∑
a
n
′
→
w