Infi-1 17

Infi-1 17

Functions #definition

We are interested in paticular functions:f:AR,ARFor example:f:R{0}R,f(x)=73x

Limit of the function

limxaf(x) is an answer to the question "to where does function tendwhen x tends to a?"

Difference from the limit of the sequence

1.In sequences, n. In functions xa, where aR{,} can be any number2.x can tend to a from the left(smaller than a) or from the right(greater than a)f(x)={2x51x>5limx5+f(x)=1,limx5f(x)=23.Value of f(a) does not affect the value of the limit

Formal definitions of the limit #definition

Limit: Cauchy's definition

ε>0:ζ>0:x:[|xa|<ζ|f(x)L|<ε]limxaf(x)=L

Limit: Heine's definition

L is called the limit of function f(x)If, for every sequence xn convergent to a, sequence f(xn) converges to Lxn:[xnaxnaf(xn)L]limxaf(x)=L
f(x)={2x51x>5Let xn=51n,yn=5+1nxn5,yn5n:xn<5n:f(xn)=11n:yn>5n:f(yn)=22By Heinelimx5f(x)Let zn=5+(1)nnzn5f(zn)=2,1,2,1,2,1,limnf(zn)

One-sided limits of the function #definition

Right-sided limit (right limit)

L is called a right-sided limit of fIf, for every sequence xna,xn>a, sequence f(xn) converges to Lxn:[xnaxn>af(xn)L]limxa+f(x)=L

Left-sided limit (left limit)

L is called a left-sided limit of fIf, for every sequence xna,xn<a, sequence f(xn) converges to Lxn:[xnaxn<af(xn)L]limxaf(x)=L

Existence of the limit of the function #lemma

limxaf(x)=Llimxa+f(x)=limxaf(x)=LProof:limxaf(x)=Lxn:[xnaxnaf(xn)L]xn:[xna(xn<axn>a)f(xn)L]xn:[(xnaxn<a)(xnaxn>a)f(xn)L]limxa+f(x)=L=limxaf(x)

Properties of the limit of the function #lemma

In general, properties of limits of the sequence also apply to the limits of the function