Infi-1 20

Derivative #definition

Let aDom(f)Function is called differentiable at a if existsf(a)=limh0f(a+h)f(a)h

Remark

Definition can be written as:f(x)=limxaf(x)f(a)xa

Remark

If f is differentiable at a, then it is continuous at aProof:f(a)limxaf(x)f(a)xaxa0f(x)f(a)0f(x)f(a)f is continuous at af(x)=|x|f(0)=limh0f(0+h)f(0)h=limh0|h|h

Trigonometric functions derivatives #lemma

xR(sinx)=cosx(cosx)=sinxProof:limt0sintt=1limt01costt=0sin(x+h)=sinxcosh+sinhcosxcos(x+h)=cosxcoshsinxsinh(sinx)=limh0sin(x+h)sinxh=limh0sinxcosh+sinhcosxsinxh==limh0sinx(cosh1)+sinhcosxh=limh0sinx(cosh1)h0+cosx(sinh)h1=cosx(cosx)=limh0cos(x+h)cosxh=limh0cosxcoshsinhsinxcosxh==limh0cosx(cosh1)+sinhsinxh=limh0cosx(cosh1)h0sinx(sinh)h1=sinx

Sum of differentiable functions #lemma

Let f,g functionsa,CRIf f,g are differentiable at a, then f+g is also differentioable at a and:(f+g)(a)=f(a)+g(a)If f is differentiable at a, then Cf is also differentiable at a and:(Cf)(a)=Cf(a)Proof:(f+g)(a)=limxa(f+g)(x)(f+g)(a)xa=limxaf(x)+g(x)(f(a)+g(a))xa==limxaf(x)f(a)xa+limxag(x)g(a)xa=f(a)+g(a)(Cf)(a)=limxa(Cf)(x)(Cf)(a)xa=limxaCf(x)Cf(a)xa=Climxaf(x)f(a)xa==Cf(a)

Product of differentiable functions #lemma

Let f,g functionsaRIf f,g are differentiable at a, then fg is also differentiable at a and:(fg)(a)=f(a)g(a)+f(a)g(a)Proof:(fg)(a)=limh0(fg)(a+h)(fg)(a)h=limh0f(a+h)g(a+h)f(a)g(a)h==limh0f(a+h)g(a+h)f(a)g(a+h)+f(a)g(a+h)f(a)g(a)h==limh0g(a+h)(f(a+h)f(a))+f(a)(g(a+h)g(a))h==limh0g(a+h)(f(a+h)f(a))+f(a)(g(a+h)g(a))h==limh0(g(a+h)g(a)f(a+h)f(a)h+f(a)g(a+h)g(a)h)==f(a)g(a)+f(a)g(a)
Remark
h0a+hag is differentiable at ag is continuous at a[a+hag(a+h)g(a)]
(x3cosx)=(x3)cosx+x3(cosx)=3x2cosxx3sinx