Infi-1 21

Infi-1 21

Differentiability #definition

f(a)=limxaf(x)f(a)xaf(a)=limh0f(a+h)f(a)hlimxaf(x)=Lxn:xnaxnaf(xn)LIf function is differentiable at a, then it is also continuous at a

Chain rule #theorem

(sin(x2))=cos(x2)2x(fg)(x)=f(g(x))g(x)Let f,g functionsg is differentiable at af is differentiable at g(a)(fg) is differentiable at aand (fg)(a)=f(g(a))g(a)Proof:(fg)(a)=limxa(fg)(x)(fg)(a)xa=limxaf(g(x))f(g(a))xa==limxa(f(g(x))f(g(a)))(g(x)g(a))(g(x)g(a))(xa)=limxaf(g(x))f(g(a))g(x)g(a)g(x)g(a)xa==limxaf(g(x))f(g(a))g(x)g(a)xa,g is continuous at ag(x)g(a)limxag(x)g(a)xa=f(g(a))g(a)
loga(x)=lnxlna=lnx1lna(lnx)=1x(loga(x))=1xlna
(lnx)=1xProof:1t(1+t)1/t=(1+11t)1/telimt01tln(1+t)=limt0ln((1+t)1/t)=limt0ln(e)=1limt0ln(1+t)t=1(lnx)=limh0ln(x+h)ln(x)h=limh0ln(x+hx)h=limh0ln(1+hx)h==limh0ln(1+hx)hx1x=11x=1x
(ax)=axlna(ex)=exProof:t0at1w0w=at1at=w+1ln(at)=ln(w+1)t=ln(w+1)ln(a)limt0at1t=limw0wln(a)ln(w+1)=ln(a)limw0wln(w+1)=ln(a)limw01ln(w+1)w=ln(a)limt0at1t=lna(ax)=limh0ax+haxh=limh0ax(ah1)h=axlimh0ah1h=axlna(ex)=exlne=ex
(xa)=axa1Explanation:(xa)=(eln(xa))=eln(xa)(ln(xa))(alnx)=a(lnx)=eln(ax)ax=xaa1x=axa1
(fg)=fgfgg2(tanx)=(sinxcosx)=cos2(x)+sin2(x)cos2(x)=1cos2(x)Let f,g functionsf,g differentiable at afg is differentiable at aand (fg)(a)=f(a)g(a)f(a)g(a)(g(a))2Proof:(fg)=(fg1)=fg1+f(g1)=fg1+f(1)g11g==fgg2fgg2=fgfgg2
fg=eln(fg)=eglnf