Infi-1 22

Infi-1 22

Inverse function #definition

f:ABf1:BAf(x)=yx=f1(y)arcsin:[1,1][π2,π2]arccos:[1,1][0,π]arctan:R(π2,π2)limx±arctanx=±π2

Continuity of the inverse function #theorem

Let f:[a,b][c,d] be continuous and invertibleThen f1:[c,d][a,b] is continuousProof:Let y[c,d]Let ynyLet x=f1(y)y=f(x)Let xn=f1(yn)xnLf(xn)f(L)f1(yn)=xnf(xn)=ynynyf(xn)yy=f(L)f(x)=f(L)f is injectivex=Lxnxf1(yn)f1(y)f1 is continuous at y

Derivative of the the inverse function #theorem

Let f:[a,b][c,d] be continuous and invertibleLet y(c,d)Let f be differentiable at f1(y) and f(f1(y))0Then f1 is differentiable at y and (f1)(y)=1f(f1(y))Proof:(f1)(y)=limtyf1(t)f1(y)tyLet x=f1(y),z=f1(t)y=f(x),t=f(z)tyf(z)f(x)f1(f(z))f1(f(x))zx(f1)(y)=limtyf1(t)f1(y)ty==limzxzxf(z)f(x)=limzx1f(z)f(x)zxf(x)=f(f1(y))=limzxf(z)f(x)zx0(f1)(y)=limzx1f(z)f(x)zx=1f(x)=1f(f1(y))
(arctany)=1y2+1Proof:(cosx)2=1(tanx)2+1(tanx)=1(cosx)2=(tanx)2+11(tanx)0(arctany)=1(tan(arctany))=1(tan(arctany))2+1=1y2+1
(arcsiny)=11y2(arccosy)=11y2