Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Infi-1 22
Infi-1 22
Inverse function
#definition
f
:
A
→
B
f
−
1
:
B
→
A
f
(
x
)
=
y
⟺
x
=
f
−
1
(
y
)
arcsin
:
[
−
1
,
1
]
→
[
−
π
2
,
π
2
]
arccos
:
[
−
1
,
1
]
→
[
0
,
π
]
arctan
:
R
→
(
−
π
2
,
π
2
)
lim
x
→
±
∞
arctan
x
=
±
π
2
Continuity of the inverse function
#theorem
Let
f
:
[
a
,
b
]
→
[
c
,
d
]
be continuous and invertible
Then
f
−
1
:
[
c
,
d
]
→
[
a
,
b
]
is continuous
Proof:
Let
y
∈
[
c
,
d
]
Let
y
n
→
y
Let
x
=
f
−
1
(
y
)
⟹
y
=
f
(
x
)
Let
x
n
=
f
−
1
(
y
n
)
x
n
→
L
⟹
f
(
x
n
)
→
f
(
L
)
f
−
1
(
y
n
)
=
x
n
⟹
f
(
x
n
)
=
y
n
y
n
→
y
⟹
f
(
x
n
)
→
y
⟹
y
=
f
(
L
)
⟹
f
(
x
)
=
f
(
L
)
⟹
⏟
f
is injective
x
=
L
⟹
x
n
→
x
⟹
f
−
1
(
y
n
)
→
f
−
1
(
y
)
⟹
f
−
1
is continuous at
y
Derivative of the the inverse function
#theorem
Let
f
:
[
a
,
b
]
→
[
c
,
d
]
be continuous and invertible
Let
y
∈
(
c
,
d
)
Let
f
be differentiable at
f
−
1
(
y
)
and
f
′
(
f
−
1
(
y
)
)
≠
0
Then
f
−
1
is differentiable at
y
and
(
f
−
1
)
′
(
y
)
=
1
f
′
(
f
−
1
(
y
)
)
Proof:
(
f
−
1
)
′
(
y
)
=
lim
t
→
y
f
−
1
(
t
)
−
f
−
1
(
y
)
t
−
y
Let
x
=
f
−
1
(
y
)
,
z
=
f
−
1
(
t
)
y
=
f
(
x
)
,
t
=
f
(
z
)
t
→
y
⟹
f
(
z
)
→
f
(
x
)
⟹
f
−
1
(
f
(
z
)
)
→
f
−
1
(
f
(
x
)
)
⟹
z
→
x
(
f
−
1
)
′
(
y
)
=
lim
t
→
y
f
−
1
(
t
)
−
f
−
1
(
y
)
t
−
y
=
=
lim
z
→
x
z
−
x
f
(
z
)
−
f
(
x
)
=
lim
z
→
x
1
f
(
z
)
−
f
(
x
)
z
−
x
f
′
(
x
)
=
f
′
(
f
−
1
(
y
)
)
=
lim
z
→
x
f
(
z
)
−
f
(
x
)
z
−
x
≠
0
⟹
(
f
−
1
)
′
(
y
)
=
lim
z
→
x
1
f
(
z
)
−
f
(
x
)
z
−
x
=
1
f
′
(
x
)
=
1
f
′
(
f
−
1
(
y
)
)
(
arctan
y
)
′
=
1
y
2
+
1
Proof:
(
cos
x
)
2
=
1
(
tan
x
)
2
+
1
(
tan
x
)
′
=
1
(
cos
x
)
2
=
(
tan
x
)
2
+
1
≥
1
⟹
(
tan
x
)
′
≠
0
⟹
(
arctan
y
)
′
=
1
(
tan
(
arctan
y
)
)
′
=
1
(
tan
(
arctan
y
)
)
2
+
1
=
1
y
2
+
1
(
arcsin
y
)
′
=
1
1
−
y
2
(
arccos
y
)
′
=
−
1
1
−
y
2