Infi-1 23

Infi-1 23

Intermediate value theorem #theorem

Let f be a continuous function on [a,b]Then f(a)f(b)<0x[a,b]:f(x)=0

Weierstrass boundedness theorem #theorem

Let f be a continuous function on [a,b]Then m,M:x[a,b]:mf(x)MProof:Let f be unbounded from above on [a,b]nN:xn:f(xn)>n[a,b] is boundedBy Bolzano-Weierstrass theorem xnkx:x[a,b]f is continuous on [a,b]f(xnk)f(x)Rf(xn)f(xnk)Contradiction!Similar proof for bounded from belowf is bounded on [a,b]

Weierstrass extreme value theorem #theorem

Let f be a continuous function on [a,b]Then c,d[a,b]:x[a,b]:f(c)f(x)f(d)Proof:f is bounded from aboveM=sup(f(x)) on [a,b]Let nNM1n is not an upper bound of f on [a,b]dn[a,b]:M1n<f(dn)nN:M1n<f(dn)Mf(dn)MBy Bolzano-Weierstrass theorem: dnkd[a,b]f is continuousf(dnk)f(d)f(dn)f(d)M=f(d)Similar proof for minimum

Fermat's theorem (stationary points) #theorem

Let f be defined on (a,b)Let x0(a,b)If f has a local extremum at x0 and f is differentiable at x0Then f(x0)=0Proof:Let x be a local minimumf(x0)=limxx0f(x)f(x0)xx0limxx0+f(x)f(x0)xx00limxx0f(x)f(x0)xx00limxx0+f(x)f(x0)xx0=limxx0f(x)f(x0)xx0f(x0)=0Similar proof for local maximum

Rolle's theorem #theorem

Let f be continuous on [a,b] and differentiable on (a,b)Let f(a)=f(b)Then c(a,b):f(c)=0Proof:f is continuous at [a,b]c,d[a,b]:x[a,b]:f(c)f(x)f(d)