Infi-1 24

Infi-1 24

Darboux's theorem #theorem

Let f be a differentiable function on [a,b]Then a1<b1[a,b]:y[f(a1),f(b1)]x[a,b]:f(x)=yIn other words, f has intermediate value propertyNote: f does not have to be differentiable on [a,b]If it is not continuous, then the discontinuities will be essential

Example

f(x)={x2sin(1x7)x00x=0f(0)=limh0f(h)f(0)h=limh0h2sin(1x7)h=0f(x)=2xsin(1x7)+x2cos(1x7)7x8=2xsin(1x7)7cos(1x7)x6f is continuous at 0f is not continuous (essential discontinuity) at 0

L'Hopital's theorem/rule #theorem

Let f,g be differentiable functions in the locality of aLet limxaf(x)g(x)Let limxaf(x)=limxag(x)=0 or ±Then limxaf(x)g(x)=limxaf(x)g(x)

Example

limx0arctanx0ex10(arctanx)=11+x2(ex1)=exBy L’Hopital’s rule: limx0arctanxex1=limx01(1+x2)ex=1

Example

limx0xarctanxxsinxBy L’Hopital’s rule: limx0(111+x2)1cosx=limx0x2(1+x2)(1cosx)==limx011+x2limx0x21cosx=limx0x21cosxlimx01cosxx2=12limx0x21cosx=2limx0xarctanxxsinx=2

Example

limxexx3+2=limxex3x2=limxex6x=limnex6=

Example

limx7+(x7)ln(x7)=limx7+ln(x7)1x7=limx7+x71ln(x7)limx7+ln(x7)1x7=limx7+1x71(x7)2=limx7+(x7)=0

Example

limx0+(sinx)sinx=limx0esinxln(sinx)=limx0eln(sinx)/(sinx)1limx0+ln(sinx)(sinx)1=cosxsinx(sinx)2cosx=limx0+(sinx)2sinx=0limx0(sinx)sinx=e0=1

Example

limx(sin(1x)+cos(1x))x2=limxex2ln(sin(1/x)+cos(1/x))limxln(sin(1x)+cos(1x))1x2=t=1xlimt0+ln(sint+cost)t2=Llimt0+costsintsint+cost2t=

When doesn't L'Hopital's rule work? #lemma

Case 1

Exist functions, such that their differentiation only makes things worselimx0e1/x2x2=Llimx02x3e1/x22x=e1/x2x4

Case 2

limxafg doesn’t existlimxx+sinxx+cosx=Llimx1+cosx1sinx doesn’t existBut limx1+sinxx1+cosxx=1 exists

Case 3

limx0sin(x)x=Llimx0cosx1=1Proof that (sinx)=cosx uses the fact that limx0sinxx=1Using L’Hopital’s rule here would create a cyclic dependencylimx01cosxx=0limx0ln(1+x)x=1limx0ax1x=lna

Case 4

Special limits00,,0,1,00,0With these 6 forms we can use L’Hopital’s ruleBut what do we do with ?In this case there is no universal technique to convert this into a 00 or  divisionIn some cases we will be able to find it, in some cases not

Logarithm vs polynomial #lemma

a,b>0:limx(lnx)axb=0Proof:limx(lnx)axb=limx(ln(x)xb/a)at0ta0a=0limxlnxxb/a=Llimx1xbaxba1=limx1baxb/a=0limx(lnx)axb=0

Polynomial vs exponential #lemma

a>1,b>0:limxxbax=0Proof:limxxbax=limx(xax/b)blimxxax/b=Llimx1ln(a)ax/b1b=0limxxbax=0
limx0ax1x=lnaln(n)n1nln(n)n diverges
limn(e1/ne1/n)sin(1/n)Let xn=nLet f(xn)=(e1/ne1/n)sin(1/n)Then limn(e1/ne1/n)sin(1/n)=limxf(x)limx(e1/xe1/x)sin(1/x)=limxesin(1/x)ln(e1/xe1/x)limxsin(1/x)ln(e1/xe1/x)=limxln(e1/xe1/x)(sin(1x))1Let t=1x,t0+limt0ln(etet)(sint)1=Llimt0et+etetet(sint)2cost=limt0(et+et)(sint)2(etet)cost==Llimt0et+etcostlimt0(sint)2etet=2limt02sint0cost1et+et2=20=0limxesin(1/x)ln(e1/xe1/x)=e0=1limn(e1/ne1/n)sin(1/n)=1