Infi-1 25

Infi-1 25

Lemma

a,b>0:limx(lnx)axb=0Proof:limx(lnx)axb=limx(ln(x)xb/a)at0ta0a=0limxlnxxb/a=Llimx1xbaxba1=limx1baxb/a=0limx(lnx)axb=0

Lemma

a>1,b>0:limxxbax=0Proof:limxxbax=limx(xax/b)blimxxax/b=Llimx1ln(a)ax/b1b=0limxxbax=0
limx0ax1x=lnaln(n)n1nln(n)n diverges
limn(e1/ne1/n)sin(1/n)Let xn=nLet f(xn)=(e1/ne1/n)sin(1/n)Then limn(e1/ne1/n)sin(1/n)=limxf(x)limx(e1/xe1/x)sin(1/x)=limxesin(1/x)ln(e1/xe1/x)limxsin(1/x)ln(e1/xe1/x)=limxln(e1/xe1/x)(sin(1x))1Let t=1x,t0+limt0ln(etet)(sint)1=Llimt0et+etetet(sint)2cost=limt0(et+et)(sint)2(etet)cost==Llimt0et+etcostlimt0(sint)2etet=2limt02sint0cost1et+et2=20=0limxesin(1/x)ln(e1/xe1/x)=e0=1limn(e1/ne1/n)sin(1/n)=1
n=1sin(n)ln2(n)nn=1sinn is boundedln2(n)n0Let f(x)=ln2(x)xf(x)=(x2ln(x)1xln2(x))x2=lnxx2(2lnx)x>e22lnx<0f(x)<0f(x) is monotonically decreasing after e2ln2(n)n is monotonically decreasing after e2By the Dirichlet’s test: n=1sin(n)ln2(n)n converges