Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Infi-1 25
Infi-1 25
Lemma
∀
a
,
b
>
0
:
lim
x
→
∞
(
ln
x
)
a
x
b
=
0
Proof:
lim
x
→
∞
(
ln
x
)
a
x
b
=
lim
x
→
∞
(
ln
(
x
)
x
b
/
a
)
a
t
→
0
⟹
t
a
→
0
a
=
0
lim
x
→
∞
ln
x
x
b
/
a
=
L
lim
x
→
∞
1
x
b
a
⋅
x
b
a
−
1
=
lim
x
→
∞
1
b
a
⋅
x
b
/
a
=
0
⟹
lim
x
→
∞
(
ln
x
)
a
x
b
=
0
Lemma
∀
a
>
1
,
b
>
0
:
lim
x
→
∞
x
b
a
x
=
0
Proof:
lim
x
→
∞
x
b
a
x
=
lim
x
→
∞
(
x
a
x
/
b
)
b
lim
x
→
∞
x
a
x
/
b
=
L
lim
x
→
∞
1
ln
(
a
)
⋅
a
x
/
b
⋅
1
b
=
0
⟹
lim
x
→
∞
x
b
a
x
=
0
lim
x
→
0
a
x
−
1
x
=
ln
a
∑
ln
(
n
)
n
≥
∑
1
n
⟹
∑
ln
(
n
)
n
diverges
lim
n
→
∞
(
e
1
/
n
−
e
−
1
/
n
)
sin
(
1
/
n
)
Let
x
n
=
n
Let
f
(
x
n
)
=
(
e
1
/
n
−
e
−
1
/
n
)
sin
(
1
/
n
)
Then
lim
n
→
∞
(
e
1
/
n
−
e
−
1
/
n
)
sin
(
1
/
n
)
=
lim
x
→
∞
f
(
x
)
lim
x
→
∞
(
e
1
/
x
−
e
−
1
/
x
)
sin
(
1
/
x
)
=
lim
x
→
∞
e
sin
(
1
/
x
)
⋅
ln
(
e
1
/
x
−
e
−
1
/
x
)
lim
x
→
∞
sin
(
1
/
x
)
⋅
ln
(
e
1
/
x
−
e
−
1
/
x
)
=
lim
x
→
∞
ln
(
e
1
/
x
−
e
−
1
/
x
)
(
sin
(
1
x
)
)
−
1
Let
t
=
1
x
,
t
→
0
+
lim
t
→
0
ln
(
e
t
−
e
−
t
)
(
sin
t
)
−
1
=
L
lim
t
→
0
e
t
+
e
−
t
e
t
−
e
−
t
−
(
sin
t
)
−
2
⋅
cos
t
=
−
lim
t
→
0
(
e
t
+
e
−
t
)
(
sin
t
)
2
(
e
t
−
e
−
t
)
cos
t
=
=
L
−
lim
t
→
0
e
t
+
e
−
t
cos
t
⋅
lim
t
→
0
(
sin
t
)
2
e
t
−
e
−
t
=
−
2
⋅
lim
t
→
0
2
sin
t
⏞
→
0
⋅
cos
t
⏞
→
1
e
t
+
e
−
t
⏟
→
2
=
−
2
⋅
0
=
0
⟹
lim
x
→
∞
e
sin
(
1
/
x
)
⋅
ln
(
e
1
/
x
−
e
−
1
/
x
)
=
e
0
=
1
⟹
lim
n
→
∞
(
e
1
/
n
−
e
−
1
/
n
)
sin
(
1
/
n
)
=
1
∑
n
=
1
∞
s
i
n
(
n
)
⋅
ln
2
(
n
)
n
∑
n
=
1
∞
sin
n
is bounded
ln
2
(
n
)
n
→
0
Let
f
(
x
)
=
ln
2
(
x
)
x
f
′
(
x
)
=
(
x
⋅
2
ln
(
x
)
⋅
1
x
−
ln
2
(
x
)
)
x
2
=
ln
x
x
2
⋅
(
2
−
ln
x
)
x
>
e
2
⟹
2
−
ln
x
<
0
⟹
f
′
(
x
)
<
0
⟹
f
(
x
)
is monotonically decreasing after
e
2
⟹
ln
2
(
n
)
n
is monotonically decreasing after
e
2
⟹
By the Dirichlet’s test:
∑
n
=
1
∞
s
i
n
(
n
)
⋅
ln
2
(
n
)
n
converges