Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Infi-1 5
Infi-1 5
Limit of the sequence
#definition
a
n
→
L
∀
ε
>
0
∃
n
ε
:
∀
n
>
n
ε
|
a
n
−
L
|
<
ε
Operations on limits
#lemma
a
n
→
L
;
b
n
→
M
a
n
±
b
n
→
L
±
M
a
n
∗
b
n
→
L
∗
M
a
n
b
n
→
L
M
∣
M
≠
0
C
∗
a
n
→
C
∗
L
a
n
→
L
∣
a
n
≥
0
|
a
n
|
→
|
L
|
Triangle inequality
#lemma
Prove:
∀
x
,
y
∈
R
:
|
x
+
y
|
≤
|
x
|
+
|
y
|
|
x
+
y
|
≤
|
x
|
+
|
y
|
↔
|
x
+
y
|
2
≤
(
|
x
|
+
|
y
|
)
2
↔
(
x
+
y
)
2
≤
x
2
+
2
|
x
|
∗
|
y
|
+
y
2
↔
2
x
∗
y
≤
2
|
x
|
∗
|
y
|
↔
2
x
∗
y
≤
|
2
x
∗
y
|
Prove:
|
|
x
|
−
|
y
|
|
≤
|
x
−
y
|
Prove:
a
n
+
b
n
→
L
+
M
∃
n
1
:
∀
n
>
n
1
:
|
a
n
−
L
|
<
ε
1
=
ε
2
∃
n
2
:
∀
n
>
n
2
:
|
b
n
−
L
|
<
ε
2
=
ε
2
|
a
n
+
b
n
−
(
L
+
M
)
|
=
|
a
n
−
L
+
b
n
−
M
|
≤
|
a
n
−
L
|
+
|
b
n
−
M
|
∃
n
ε
=
m
a
x
(
n
1
,
n
2
)
:
∀
n
>
n
ε
:
|
a
n
+
b
n
−
(
L
+
M
)
|
≤
|
a
n
−
L
|
+
|
b
n
−
M
|
<
ε
1
+
ε
2
=
ε
2
+
ε
2
=
ε
⟹
∃
n
ε
=
m
a
x
(
n
1
,
n
2
)
:
∀
n
>
n
ε
:
|
a
n
+
b
n
−
(
L
+
M
)
|
<
ε
⟹
a
n
+
b
n
→
L
+
M
Infinite limits
#definition
lim
n
→
+
∞
a
n
=
+
∞
↔
∃
M
>
0
:
∀
n
>
n
M
:
M
<
a
n
lim
n
→
∞
a
n
=
−
∞
↔
lim
n
→
∞
−
a
n
=
+
∞
Zero limit of absolute value
#lemma
|
a
n
|
→
0
↔
a
n
→
0
"Inverse" limit
#lemma
Prove:
a
n
>
0
,
1
a
n
→
0
⟹
a
n
→
+
∞
∃
n
ε
:
∀
n
>
n
ε
:
|
1
a
n
|
<
ε
↔
1
|
a
n
|
<
ε
↔
|
a
n
|
>
1
ε
⟹
∃
M
=
1
ε
:
∀
n
>
n
M
=
n
ε
:
|
a
n
|
>
M
⟹
a
n
→
∞