Infi-1 5

Infi-1 5

Limit of the sequence #definition

anLε>0nε:n>nε|anL|<ε

Operations on limits #lemma

anL;bnMan±bnL±ManbnLManbnLMM0CanCLanLan0|an||L|

Triangle inequality #lemma

Prove: x,yR:|x+y||x|+|y||x+y||x|+|y||x+y|2(|x|+|y|)2(x+y)2x2+2|x||y|+y22xy2|x||y|2xy|2xy|Prove: ||x||y|||xy|
Prove: an+bnL+Mn1:n>n1:|anL|<ε1=ε2n2:n>n2:|bnL|<ε2=ε2|an+bn(L+M)|=|anL+bnM||anL|+|bnM|nε=max(n1,n2):n>nε:|an+bn(L+M)||anL|+|bnM|<ε1+ε2=ε2+ε2=εnε=max(n1,n2):n>nε:|an+bn(L+M)|<εan+bnL+M

Infinite limits #definition

limn+an=+M>0:n>nM:M<anlimnan=limnan=+

Zero limit of absolute value #lemma

|an|0an0

"Inverse" limit #lemma

Prove: an>0,1an0an+nε:n>nε:|1an|<ε1|an|<ε|an|>1εM=1ε:n>nM=nε:|an|>Man