Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Infi-1 6
Infi-1 6
Operations on infinites
#lemma
∞
+
∞
=
∞
C
>
0
,
C
⋅
∞
=
∞
C
<
0
,
C
⋅
∞
=
−
∞
…
a
n
→
∞
,
b
n
→
0
a
n
⋅
b
n
→
?
0
∞
,
∞
∞
,
∞
−
∞
:
Special cases
a
n
b
n
→
?
a
n
=
17
n
,
b
n
=
3
n
a
n
b
n
=
17
n
3
n
=
17
3
→
17
3
a
n
=
17
n
,
b
n
=
3
n
2
a
n
b
n
=
17
n
3
n
2
=
17
3
n
→
0
Sandwich theorem
#theorem
a
n
,
b
n
,
c
n
{
a
n
≤
b
n
≤
c
n
a
n
→
L
,
c
n
→
L
⟹
b
n
→
L
{
∀
ε
>
0
∃
n
ε
a
:
∀
n
>
n
ε
a
:
|
a
n
−
L
|
<
ε
∀
ε
>
0
∃
n
ε
c
:
∀
n
>
n
ε
c
:
|
c
n
−
L
|
<
ε
∀
ε
>
0
∃
n
ε
=
m
a
x
(
n
ε
a
,
n
ε
c
)
:
∀
n
>
n
ε
:
L
−
ε
<
a
n
≤
b
n
≤
c
n
<
L
+
ε
⟹
∀
ε
∃
n
ε
=
m
a
x
(
n
ε
a
,
n
ε
c
)
:
∀
n
>
n
ε
:
|
b
n
−
L
|
<
ε
⟹
b
n
→
L
a
n
→
L
,
a
n
>
0
⟹
L
>
0
?
L
≥
0
?
a
n
=
1
n
→
0
⟹
L
≯
0
a
n
≤
b
n
,
a
n
→
L
,
b
n
→
M
⟹
L
≤
M
?
L
−
ε
<
a
n
≤
b
n
<
M
−
ε
⟹
L
<
M
a
n
→
0
,
m
≤
b
n
≤
M
⟹
a
n
∗
b
n
→
0
?
m
⋅
a
n
≤
b
n
a
n
≤
M
⋅
a
n
m
⋅
a
n
→
m
∗
0
=
0
M
⋅
a
n
→
M
∗
0
=
0
⟹
b
n
a
n
→
0
|
a
n
|
→
0
⟺
a
n
→
0
−
ε
<
|
a
n
|
<
ε
⟹
−
ε
<
a
n
<
ε
⟹
|
a
n
|
→
0
⟹
a
n
→
0
−
ε
<
a
n
<
ε
⟹
−
ε
<
|
a
n
|
<
ε
⟹
a
n
→
0
⟹
|
a
n
|
→
0
a
n
→
∞
,
a
n
≤
b
n
⟹
b
n
→
∞
?
∀
M
>
0
∃
n
M
:
∀
n
>
n
M
:
b
n
≥
a
n
>
M
⟹
∀
M
>
0
∃
n
M
:
∀
n
>
n
M
:
b
n
>
M
⟹
b
n
→
∞
a
n
→
−
∞
,
b
n
≤
a
n
⟹
b
n
→
−
∞
∀
M
>
0
∃
n
M
:
∀
n
>
n
M
:
−
b
n
≥
−
a
n
>
M
⟹
∀
M
>
0
∃
n
M
:
∀
n
>
n
M
:
−
b
n
>
M
⟹
b
n
→
−
∞
Bernoulli
#theorem
x
>
−
1
⟹
(
1
+
x
)
n
≥
1
+
n
x
W
>
1
⟹
W
n
→
∞
W
=
1
⟹
W
n
=
1
→
1
−
1
<
W
<
1
⟹
W
n
→
0
W
≤
−
1
⟹
W
n
↛
L
,
↛
∞
,
↛
−
∞
W
>
1
W
n
=
(
1
+
W
−
1
)
n
x
=
W
−
1
(
1
+
W
−
1
)
n
≥
1
+
(
W
−
1
)
n
W
>
1
⟹
(
W
−
1
)
>
0
⟹
1
+
(
W
−
1
)
n
→
∞
⟹
W
n
→
∞
−
1
<
W
<
1
W
=
0
⟹
W
n
=
0
→
0
|
W
|
n
=
|
W
n
|
|
W
n
|
→
0
⟺
W
n
→
0
|
W
n
|
=
(
1
1
|
W
|
)
n
1
|
W
|
>
1
⟹
(
1
|
W
|
)
n
→
∞
1
(
1
|
W
|
)
n
→
0
⟹
|
W
n
|
→
0
⟺
W
n
→
0