Infi-1 7

Infi-1 7

Division tools #theorem

L=limn|an+1an|1.L<1an02.L>1an3.L=1 or LInconclusive4.|an|nL
limnnnan=nlimn|an|n=limn|an+1an|=limn|n+1n|=1

Monotonically non-descending sequence (עולה) #definition

nN:anan+1

Monotonically ascending sequence (עולה ממש) #definition

nN:an<an+1

Monotonically non-ascending sequence (ירדת) #definition

nN:an+1an

Monotonically descending sequence (ירדת ממש) #definition

nN:an+1<an

Note

Monotonic sequence always converges in the broadest sense

Properties of monotonic sequences #lemma

Let an be a monotonic sequence1.Non-descending: 1.1Top-limited: limnan=sup(an)1.2Not top-limited: limnan=2.Non-ascending: 2.1Bottom-limited: limnan=inf(an)2.2Not bottom-limited: limnan=Proof for 1.1: L=sup(an)anLε>0:an<L+εε>0N:Lε<aNnN:Lε<aNanLε<aNan<L+εlimnan=LProof for 2.1: L=inf(an)Lanε>0:Lε<anε>0:N:aN<L+εnN:anaN<L+εLε<anaN<L+εlimnan=L
an=k=n3n1kan=1n+1n+1++13nan+1an13n+1+13n+2+13n+31n13n+1+13n+2+13n+313n+13n+13n=1nan+1anlimnan=inf(an)