Infi-1 9

Infi-1 9

Subsequence #definition

Let anLet akn:nN:kn<kn+1For example:an={12,14,18,116,}a2n={14,116,164,},kn=2n:2<4<6<an+7={1256,1512,}kn=n+7:8<9<10<

Monotonic subsequence #lemma

For any sequence there exists a monotonic subsequenceProof:Let xm be a "peak" if n>m:xnxm1.There are infinitely many "peaks"xmn={xm1,xm2,xm3,},m1<m2<ma,mb:ma<mbxmaxmb{xm1,xm2,} monotonically non-asscending2.There is a finite number of "peaks"Let xn1 be past all of themxn1 is not a peak, then n2>n1:xn2>xn1a>n2:xna is not a "peak"nb:xna>xnbBy induction, sequence {xn1,xn2,}monotonically ascending

Bolzano-Weierstrass theorem #theorem

Every bounded sequence has a convergent subsequenceProof:akn:akn monotonic and boundedakn converges

Limit of subsequence #lemma

Limit of any subsequence is equal to the limit of a sequence, if such existsProof:

Equal limits of odd/even subsequences #lemma

If a2n,a2n1 converge to L, then an converges to LProof:ε>0:N2n:2n>N2n:|a2nL|<εε>0:N2n1:2n1>N2n1:|a2n1L|<εε>0:N=max(N2n,N2n1):n>N:|anL|<εlimnan=L

Partial limits #definition

Let an,cRC is called a partial limit of an if there exists a subsequence akn converging to C

Example

an=(1)nSet of partial limits of this sequence is {1,1}

Example

an={1,12,1,12,13,}Set of partial limits of this sequence is {1nnN}{0}

Limit superior #definition

Supremum of the set of partial limits ofan is called limit superiorlimsup(an) or liman

Limit inferior #definition

Infimum of the set of partial limits ofan is called limit superiorliminf(an) or liman

Equal partial limits #lemma

liman=liman=Llimnan=LNote: also true for converging in the broadest senseProof: