Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Midterm
Midterm
1
a
n
→
∞
b
n
is bottom-limited/bottom-bounded
(
b
n
≥
B
)
Prove by definition:
a
n
+
b
n
→
∞
Proof:
a
n
→
∞
⟹
∀
M
1
∈
R
:
∃
N
∈
N
:
∀
n
>
N
:
a
n
>
M
1
b
n
is bottom-bounded/lower-bounded/bottomo-limited/etc.
⟹
∃
B
∈
R
:
∀
n
∈
N
:
b
n
≥
B
Let
B
∈
R
:
b
n
≥
B
⟹
∀
n
∈
N
:
a
n
+
b
n
≥
a
n
+
B
Let
M
∈
R
Let
M
1
=
M
−
B
∀
M
1
:
∃
N
:
∀
n
>
N
:
a
n
>
M
1
⟹
a
n
>
M
−
B
⟹
a
n
+
b
n
≥
a
n
+
B
>
M
−
B
+
B
=
M
⟹
∀
M
:
∃
N
:
∀
n
>
N
:
a
n
+
b
n
>
M
⟹
lim
n
→
∞
a
n
+
b
n
=
∞
2
a
n
=
{
a
1
>
1
a
n
+
1
=
2
a
n
−
1
Prove:
a
n
is monotonically strictly increasing
Find
lim
n
→
∞
a
n
Solution:
Base case.
a
1
>
1
Induction step. Let
a
n
>
1
⟹
a
n
+
1
=
2
a
n
−
1
>
2
−
1
=
1
⟹
a
n
+
1
>
1
⟹
By induction:
∀
n
∈
N
:
a
n
>
1
a
n
+
1
−
a
n
=
2
a
n
−
1
−
a
n
=
a
n
−
1
>
0
⟹
a
n
+
1
>
a
n
⟹
a
n
is monotonically strictly increasing
Let
lim
n
→
∞
a
n
=
L
∈
R
⟹
lim
n
→
∞
a
n
+
1
=
lim
n
→
∞
a
n
=
L
⟹
L
=
lim
n
→
∞
2
a
n
−
1
=
2
L
−
1
L
=
2
L
−
1
⟹
L
=
1
a
1
>
1
⟹
a
1
=
1
+
α
,
α
>
0
∀
n
∈
N
:
a
n
+
1
>
a
1
⟹
a
n
+
1
>
1
+
α
⟹
lim
n
→
∞
a
n
+
1
≥
1
+
α
>
1
⟹
lim
n
→
∞
a
n
≠
1
⟹
L
≠
1
⟹
L
∉
R
a
n
is monotonically strictly increasing and
a
n
>
0
⟹
a
n
converges in the broadest sense
⟹
lim
n
→
∞
a
n
=
∞
3
Find
lim
n
→
∞
(
n
+
1
)
3
−
n
3
n
+
1
Solution:
a
3
−
b
3
=
(
a
−
b
)
(
a
2
+
a
b
+
b
2
)
lim
n
→
∞
(
n
+
1
)
3
−
n
3
n
+
1
=
lim
n
→
∞
(
(
n
+
1
)
−
n
)
(
(
n
+
1
)
2
+
n
(
n
+
1
)
+
n
2
)
n
+
1
=
=
lim
n
→
∞
(
(
n
+
1
)
−
n
)
(
(
n
+
1
)
+
n
)
(
n
+
1
+
n
(
n
+
1
)
+
n
)
n
+
1
(
(
n
+
1
)
+
n
)
=
=
lim
n
→
∞
(
n
+
1
−
n
)
(
n
+
1
+
n
(
n
+
1
)
+
n
)
n
+
1
+
n
(
n
+
1
)
=
lim
n
→
∞
2
n
+
1
+
n
2
+
n
n
+
1
+
n
2
+
n
=
=
lim
n
→
∞
2
+
1
n
⏞
→
0
+
1
+
1
n
⏞
→
1
1
+
1
n
⏟
→
0
+
1
+
1
n
⏟
→
1
=
2
+
1
1
+
1
=
3
2
⟹
lim
n
→
∞
(
n
+
1
)
3
−
n
3
n
+
1
=
3
2
4
a
n
is monotonically non-increasing
a
n
>
0
b
n
=
a
2
n
a
2
n
−
1
(
a
2
n
−
1
−
a
2
n
)
Prove that
b
n
converges and find
lim
n
→
∞
b
n
Solution:
Let
c
n
=
a
2
n
a
2
n
−
1
0
<
a
2
n
≤
a
2
n
−
1
⟹
0
<
a
2
n
a
2
n
−
1
≤
1
⟹
0
<
c
n
≤
1
⟹
|
c
n
|
≤
1
Let
d
n
=
a
2
n
−
1
−
a
2
n
a
n
is monotonically non-increasing and bottom-bounded
⟹
∃
lim
n
→
∞
a
n
=
L
∈
R
and
L
≥
0
∃
lim
n
→
∞
a
n
⟹
lim
n
→
∞
a
2
n
=
lim
n
→
∞
a
2
n
−
1
=
L
⟹
lim
n
→
∞
d
n
=
lim
n
→
∞
a
2
n
−
1
−
a
2
n
=
lim
n
→
∞
a
2
n
−
1
−
lim
n
→
∞
a
2
n
=
L
−
L
=
0
lim
n
→
∞
b
n
=
lim
n
→
∞
c
n
⋅
d
n
{
c
n
is both top- and bottom-bounded
d
n
→
0
⟹
lim
n
→
∞
c
n
⋅
d
n
=
0
⟹
lim
n
→
∞
b
n
=
0
5
∑
n
=
1
∞
a
n
converges
∑
n
=
1
∞
a
n
>
0
a
n
=
S
n
2
+
S
n
−
6
Find
∑
n
=
1
∞
a
n
Solution:
S
n
+
1
−
S
n
=
a
n
+
1
⟹
S
n
+
1
−
S
n
=
S
n
+
1
2
+
S
n
+
1
−
6
⟹
S
n
=
6
−
S
n
+
1
2
∑
n
=
1
∞
a
n
converges
⟹
∃
lim
n
→
∞
S
n
=
L
∈
R
lim
n
→
∞
S
n
+
1
=
lim
n
→
∞
S
n
=
L
⟹
lim
n
→
∞
S
n
=
lim
n
→
∞
(
6
−
S
n
+
1
2
⏟
→
L
2
)
⟹
L
=
6
−
L
2
L
2
+
L
−
6
=
0
⟹
(
L
+
3
)
(
L
−
2
)
=
0
⟹
[
L
=
−
3
L
=
2
∑
n
=
1
∞
a
n
>
0
⟹
lim
n
→
∞
S
n
=
L
>
0
⟹
L
=
2
⟹
lim
n
→
∞
S
n
=
2
⟹
∑
n
=
1
∞
a
n
=
2