Midterm

Midterm

1

anbn is bottom-limited/bottom-bounded(bnB)Prove by definition: an+bnProof:anM1R:NN:n>N:an>M1bn is bottom-bounded/lower-bounded/bottomo-limited/etc.BR:nN:bnBLet BR:bnBnN:an+bnan+BLet MRLet M1=MBM1:N:n>N:an>M1an>MBan+bnan+B>MB+B=MM:N:n>N:an+bn>Mlimnan+bn=

2

an={a1>1an+1=2an1Prove: an is monotonically strictly increasingFind limnanSolution:Base case. a1>1Induction step. Let an>1an+1=2an1>21=1an+1>1By induction: nN:an>1an+1an=2an1an=an1>0an+1>anan is monotonically strictly increasingLet limnan=LRlimnan+1=limnan=LL=limn2an1=2L1L=2L1L=1a1>1a1=1+α,α>0nN:an+1>a1an+1>1+αlimnan+11+α>1limnan1L1LRan is monotonically strictly increasing and an>0an converges in the broadest senselimnan=

3

Find limn(n+1)3n3n+1Solution:a3b3=(ab)(a2+ab+b2)limn(n+1)3n3n+1=limn((n+1)n)((n+1)2+n(n+1)+n2)n+1==limn((n+1)n)((n+1)+n)(n+1+n(n+1)+n)n+1((n+1)+n)==limn(n+1n)(n+1+n(n+1)+n)n+1+n(n+1)=limn2n+1+n2+nn+1+n2+n==limn2+1n0+1+1n11+1n0+1+1n1=2+11+1=32limn(n+1)3n3n+1=32

4

an is monotonically non-increasingan>0bn=a2na2n1(a2n1a2n)Prove that bn converges and find limnbnSolution:Let cn=a2na2n10<a2na2n10<a2na2n110<cn1|cn|1Let dn=a2n1a2nanis monotonically non-increasing and bottom-boundedlimnan=LR and L0limnanlimna2n=limna2n1=Llimndn=limna2n1a2n=limna2n1limna2n=LL=0limnbn=limncndn{cn is both top- and bottom-boundeddn0limncndn=0limnbn=0

5

n=1an convergesn=1an>0an=Sn2+Sn6Find n=1anSolution:Sn+1Sn=an+1Sn+1Sn=Sn+12+Sn+16Sn=6Sn+12n=1an convergeslimnSn=LRlimnSn+1=limnSn=LlimnSn=limn(6Sn+12L2)L=6L2L2+L6=0(L+3)(L2)=0[L=3L=2n=1an>0limnSn=L>0L=2limnSn=2n=1an=2