Theorems and proofs

Limit comparison

L=limn|an+1an|1.L<1an02.L>1an3.L=1 or LInconclusive4.|an|nL

Bernoulli

x>1(1+x)n1+nx

Bolzano-Weierstrass theorem

Every bounded sequence has a convergent subsequenceProof:akn:akn monotonic and boundedakn converges

Cauchy's criterion

{an}Ran convergesan is a Cauchy’s sequenceProof:Let anLε>0Nε:n>Nε:|anL|<ε2Let mn|anam|=|anLam+L||anL|<ε2+|Lam|=|amL|<ε2|anam|<εan is a Cauchy’s sequenceLet an be a Cauchy’s sequence1.Cauchy’s sequence is boundedProof:By definition of the limit: ε=7:Nε:n,m>Nε:|anam|<7Let z=aNε+1Then 7<anz<7n>Nε:z7anz+7A={a1,a2,a3,,aNε} is a finite setm=min(A),M=max(A)nN:min(m,z7)anmax(M,z+7)sequence is bounded2.If sequence is bounded, then there exists a convergent subsequence aknaknLk3.Limit of a subsequence is a limit of the whole sequence, if such existsε>0Na:n,m>Na:|anam|<ε2ε>0Nk:n>Nk:|aknLk|<ε2Let n>Nε=max(Na,Nk)|anLk|=|anaknLk+akn||anakn|<ε2+|aknLk|<ε2<εanLk4.Proof for 3. via limanLet liman=T>LkThen amnTN1:n>N1:|aknLk|<TL4N2:n>N2:|amnT|<TL4N3:n,m>N3:|anam|<TL4Nε=max(N1,N2,N3):n,m>Nε:|aknLk|<TL4,|amnT|<TL4,|anam|<TL4LTL4<akn<L+TL4TTL4<amn<T+TL45LT4<akn<T+3L43T+L4<amn<5TL4amnakn>3T+L4akn>3T+L4T+3L4=TL2>TL4

e

(1+an)nea

Harmonic series

n=11naLa>1

Convergence of series

n=1anLSN is a Cauchy’s sequence(ε>0:Nε:N,M>Nε:|SNSM|<ε)If M>N:SM=SN+n=N+1Man|SNSM|<ε|n=N+1Man|<ε

Direct comparison test

an,bn:0anbnbnLanManMbnLProof:0anANAN1=aN0AN>ANAN is monotonically non-descendingn=1Nbn=BNbnLC:BNCANBNCAN<CAN is monotonically non-descending and upper-boundeedANM

Limit comparison test

an,bn0an,bnlimnanbn=LL>0(anM1bnM2)L=0(anM1bnM2)L=(anM1bnM2)Proof:Let 0an,bnLet limnanbn=LProof for 1.L>01eL<anbn<eL1eLbnaneLbn1.anM11ebnMbnM22.bnM2eLbnManM11. and 2.anM1bnM2Proof for 2.L=0,bnM2anbn0anbn<7an<7bnbnM27bn7M2anM1Proof for 3.L=,anM1anbnanbn>420an>420bnanM1420bnMbnM2

Root test (nth root test, Cauchy's criterion)

Let L=limn|an|nL>1anML<1|an|ML=1Test is inconclusiveProof:Let limn|an|nakn:|akn|knLIf L>1L>L+12>1|akn|knL+12|akn|(L+12)knL+12>1(L+12)kn|akn|akn0an0anMIf L<1L<L+12|akn|knL|an|nL+12|an|(L+12)n(L+12)nM|an|M

Ratio test (d'Alembert's criterion)

Let L=limn|an+1an|L>1anML<1|an|M

Cauchy's condensation test

Let an0,an is monotonically non-increasinganM1n=02na2nM2Corollary:1npM1p>11npM12n1(2n)pM22n1(2n)p=2nnp=(21p)n1npM121p<11p<0p>1

Dirichlet's test

bn is boundedan monotonically non-increasing,an0ThenbnanM1Example:(1)nn=(1)n1n|(1)n|11n0(1)nnM1Proof:an0 and an is monotonically non-increasingnN:an0bn is boundedSN=n=1Nbn is boundedanbnLε>0:Nε:N,M>NεN:|n=M+1Nanbn|<ε|n=M+1Nanbn|=|n=M+1Nan(SnSn1)|=|n=M+1NanSnn=M+1NanSn1|==|SMaM+1+n=M+1N1Sn(anan+1)+SNaN||SMaM+1|+n=M+1N1|Sn(anan+1)|+|SNaN|==|SM||aM+1|+n=M+1N1|Sn||(anan+1)|+|SN||aN||Sn|KaN,aM+10aM+1aM+2aM+1aM+20|SM||aM+1|+n=M+1N1|Sn||(anan+1)|+|SN||aN|K(aM+1+n=M+1N(anan+1)+aN)|n=M+1Nanbn|K(aM+1+aM+1aM+2++aN1aN+aN)==K2aM+1|n=M+1Nanbn|2KaM+1ε>0:Nε:M>Nε:|aM+1|<ε2Kε>0:Nε:M>Nε:|n=M+1Nanbn|2Kam+1<2Kε2K=ε
(1)n,sin(n),cos(n) are bounded seriessin(n) is boundedsin(n)n=(sin(n)1n0)M1SN=n=1Nsin(n)=sin(1)+sin(2)++sin(N)2sin(x)sin(y)=cos(xy)cos(x+y)2sin(1)SN=2sin(1)sin(1)+2sin(1)sin(2)++2sin(1)sin(N)==cos(0)cos(2)+cos(1)cos(3)+cos(2)cos(4)++cos(N1)cos(N+1)==cos(0)+cos(1)cos(N)cos(N+1)SN=cos(0)+cos(1)cos(N)cos(N+1)2sin(1)2cos(N)cos(N+1)2cos(0)+cos(1)22sin(1)SNcos(0)+cos(1)+22sin(1)

Alternating series test (Leibniz criterion)

(1)nan is monotonically non-increasing and an0(1)nanM1

Inverse derivative

Let f:[a,b][c,d] be continuous and invertibleLet y(c,d)Let f be differentiable at f1(y) and f(f1(y))0Then f1 is differentiable at y and (f1)(y)=1f(f1(y))Proof:(f1)(y)=limtyf1(t)f1(y)tyLet x=f1(y),z=f1(t)y=f(x),t=f(z)tyf(z)f(x)f1(f(z))f1(f(x))zx(f1)(y)=limtyf1(t)f1(y)ty==limzxzxf(z)f(x)=limzx1f(z)f(x)zxf(x)=f(f1(y))=limzxf(z)f(x)zx0(f1)(y)=limzx1f(z)f(x)zx=1f(x)=1f(f1(y))

Intermediate value theorem

Let f be a continuous function on [a,b]Then f(a)f(b)<0x[a,b]:f(x)=0

Weierstrass boundedness theorem

Let f be a continuous function on [a,b]Then m,M:x[a,b]:mf(x)MProof:Let f be unbounded from above on [a,b]nN:xn:f(xn)>n[a,b] is boundedBy Bolzano-Weierstrass theorem xnkx:x[a,b]f is continuous on [a,b]f(xnk)f(x)Rf(xn)f(xnk)Contradiction!Similar proof for bounded from belowf is bounded on [a,b]

Weierstrass extreme value theorem

Let f be a continuous function on [a,b]Then c,d[a,b]:x[a,b]:f(c)f(x)f(d)Proof:f is bounded from aboveM=sup(f(x)) on [a,b]Let nNM1n is not an upper bound of f on [a,b]dn[a,b]:M1n<f(dn)nN:M1n<f(dn)Mf(dn)MBy Bolzano-Weierstrass theorem: dnkd[a,b]f is continuousf(dnk)f(d)f(dn)f(d)M=f(d)Similar proof for minimum

Fermat's theorem (stationary points)

Let f be defined on (a,b)Let x0(a,b)If f has a local extremum at x0 and f is differentiable at x0Then f(x0)=0Proof:Let x be a local minimumf(x0)=limxx0f(x)f(x0)xx0limxx0+f(x)f(x0)xx00limxx0f(x)f(x0)xx00limxx0+f(x)f(x0)xx0=limxx0f(x)f(x0)xx0f(x0)=0Similar proof for local maximum

Rolle's theorem

Let f be continuous on [a,b] and differentiable on (a,b)Let f(a)=f(b)Then c(a,b):f(c)=0Proof:f is continuous at [a,b]c,d[a,b]:x[a,b]:f(c)f(x)f(d)

Darboux's theorem

Let f be a differentiable function on [a,b]Then a1<b1[a,b]:y[f(a1),f(b1)]x[a,b]:f(x)=yIn other words, f has intermediate value propertyNote: f does not have to be differentiable on [a,b]If it is not continuous, then the discontinuities will be essential

L'Hopital's theorem/rule

Let f,g be differentiable functions in the locality of aLet limxaf(x)g(x)Let limxaf(x)=limxag(x)=0 or ±Then limxaf(x)g(x)=limxaf(x)g(x)

Lagrange's mean value theorem

This is a generalization of Rolle’s theoremLet f be continuous on [a,b] and differentiable on (a,b)Then ξ(a,b):f(ξ)=f(b)f(a)ba

Cauchy's theorem

Let f,g be continuous on [a,b]and differentiable on (a,b)Let x(a,b):g(x)0Then c(a,b):f(c)g(c)=f(b)f(a)g(b)g(a)