Infi-2 1

Integrals

Primitive function #definition

Let f be a function on [a,b] or any otherFunction F is called primitive of f ifF=fFor example:f(x)=x2CR:F(x)=x33+C

Two primitives #lemma

Let f be a functionLet F,G be antiderivatives of fThen CR:F=G+CProof:(FG)=FG=ff=0FG is constantCR:FG=CCR:F=G+C

Indefinite integral #definition

Let f be a functionIntegral is a set of primitives of fIntegral is denoted as f(x)dxNote: this integral is an indefinite integral
Let f be a functionWe want to find it’s primitive FLet there be four types of functions1.Functions without a primitiveBy Darboux’s theorem, if function has a removable or a jump discontinuityit has no primitive2.Functions with "immediate" (known) integralsxndx=xn+1n+1+Cx1dx=ln|x|+Caxdx=axlna+Csin(x)dx=cos(x)+Ccos(x)dx=sin(x)+C1cos2(x)dx=tan(x)+C1x2+1dx=arctan(x)+C11x2dx=arcsin(x)+Cln(x)dx=xlnxx+C3.Functions with no elementary primitiveFor example: ex2dx=π2erfi(x)+C4....

Linearity of integrals #lemma

(af+g)(x)dx=af(x)dx+g(x)dxProof:Let F=fLet G=g(aF+G)=af+g(af+g)(x)dx=(aF+G)=aF+G=af(x)dx+g(x)dx(af+g)(x)dx=af(x)dx+g(x)dx

Integration by parts #theorem

Let f,g be functionsThen (fg)(x)dx=fg(fg)(x)dxProof:(fg)=fg+fg(fg)(x)dx=(fg+fg)(x)dx=(fg)(x)dx+(fg)(x)dxfg=(fg)(x)dx(fg)(x)dx(fg)(x)dx=fg(fg)(x)dx

When should we use integration by parts?

1. Product of functions, when one function is an obvious derivativewith known primitivexsinxdx=x(cosx)dx=xcosxcosxdx=xcosx+sinx+CUsuall, choosing polynomial as f is profitableln(x)dx=ln(x)xdx=xlnx(lnx)xdx=xlnx1dx=xlnxx+C
sin(lnx)dx=sin(lnx)xdx=xsin(lnx)cos(lnx)dxcos(lnx)dx=cos(lnx)xdx=xcos(lnx)+sin(lnx)dx2cos(lnx)dx=xsin(lnx)+xcos(lnx)cos(lnx)dx=xsin(lnx)+xcos(lnx)2+Csin(lnx)dx=xsin(lnx)xcos(lnx)2+C