Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Infi-2 1
Integrals
Primitive function
#definition
Let
f
be a function on
[
a
,
b
]
or any other
Function
F
is called primitive of
f
if
F
′
=
f
For example:
f
(
x
)
=
x
2
⟹
∀
C
∈
R
:
F
(
x
)
=
x
3
3
+
C
Two primitives
#lemma
Let
f
be a function
Let
F
,
G
be antiderivatives of
f
Then
∃
C
∈
R
:
F
=
G
+
C
Proof:
(
F
−
G
)
′
=
F
′
−
G
′
=
f
−
f
=
0
⟹
F
−
G
is constant
⟹
∃
C
∈
R
:
F
−
G
=
C
⟹
∃
C
∈
R
:
F
=
G
+
C
Indefinite integral
#definition
Let
f
be a function
Integral is a set of primitives of
f
Integral is denoted as
∫
f
(
x
)
d
x
Note: this integral is an indefinite integral
Let
f
be a function
We want to find it’s primitive
F
Let there be four types of functions
1.
Functions without a primitive
By Darboux’s theorem, if function has a removable or a jump discontinuity
it has no primitive
2.
Functions with "immediate" (known) integrals
∫
x
n
d
x
=
x
n
+
1
n
+
1
+
C
∫
x
−
1
d
x
=
ln
|
x
|
+
C
∫
a
x
d
x
=
a
x
ln
a
+
C
∫
sin
(
x
)
d
x
=
−
cos
(
x
)
+
C
∫
cos
(
x
)
d
x
=
sin
(
x
)
+
C
∫
1
cos
2
(
x
)
d
x
=
tan
(
x
)
+
C
∫
1
x
2
+
1
d
x
=
arctan
(
x
)
+
C
∫
1
1
−
x
2
d
x
=
arcsin
(
x
)
+
C
∫
ln
(
x
)
d
x
=
x
ln
x
−
x
+
C
3.
Functions with no elementary primitive
For example:
∫
e
x
2
d
x
=
π
2
e
r
f
i
(
x
)
+
C
4.
...
Linearity of integrals
#lemma
∫
(
a
f
+
g
)
(
x
)
d
x
=
a
∫
f
(
x
)
d
x
+
∫
g
(
x
)
d
x
Proof:
Let
F
′
=
f
Let
G
′
=
g
⟹
(
a
F
′
+
G
′
)
=
a
f
+
g
⟹
∫
(
a
f
+
g
)
(
x
)
d
x
=
(
a
F
+
G
)
=
a
F
+
G
=
a
∫
f
(
x
)
d
x
+
∫
g
(
x
)
d
x
⟹
∫
(
a
f
+
g
)
(
x
)
d
x
=
a
∫
f
(
x
)
d
x
+
∫
g
(
x
)
d
x
Integration by parts
#theorem
Let
f
,
g
be functions
Then
∫
(
f
g
′
)
(
x
)
d
x
=
f
g
−
∫
(
f
′
g
)
(
x
)
d
x
Proof:
(
f
g
)
′
=
f
′
g
+
f
g
′
⟹
∫
(
f
g
)
′
(
x
)
d
x
=
∫
(
f
′
g
+
f
g
′
)
(
x
)
d
x
=
∫
(
f
′
g
)
(
x
)
d
x
+
∫
(
f
g
′
)
(
x
)
d
x
⟹
f
g
=
∫
(
f
′
g
)
(
x
)
d
x
−
∫
(
f
g
′
)
(
x
)
d
x
⟹
∫
(
f
g
′
)
(
x
)
d
x
=
f
g
−
∫
(
f
′
g
)
(
x
)
d
x
When should we use integration by parts?
1.
Product of functions, when one function is an obvious derivative
with known primitive
∫
x
sin
x
d
x
=
∫
x
(
−
cos
x
)
′
d
x
=
−
x
cos
x
−
∫
−
cos
x
d
x
=
−
x
cos
x
+
sin
x
+
C
Usuall, choosing polynomial as
f
is profitable
∫
ln
(
x
)
d
x
=
∫
ln
(
x
)
x
′
d
x
=
x
ln
x
−
∫
(
ln
x
)
′
x
d
x
=
x
ln
x
−
∫
1
d
x
=
x
ln
x
−
x
+
C
∫
sin
(
ln
x
)
d
x
=
∫
sin
(
ln
x
)
x
′
d
x
=
x
sin
(
ln
x
)
−
∫
cos
(
ln
x
)
d
x
∫
cos
(
ln
x
)
d
x
=
∫
cos
(
ln
x
)
x
′
d
x
=
x
cos
(
ln
x
)
+
∫
sin
(
ln
x
)
d
x
⟹
2
∫
cos
(
ln
x
)
d
x
=
x
sin
(
ln
x
)
+
x
cos
(
ln
x
)
⟹
∫
cos
(
ln
x
)
d
x
=
x
sin
(
ln
x
)
+
x
cos
(
ln
x
)
2
+
C
⟹
∫
sin
(
ln
x
)
d
x
=
x
sin
(
ln
x
)
−
x
cos
(
ln
x
)
2
+
C