Infi-2 10

Absolute and conditional convergence #definition

f is called absolutely convergent if |f| convergesf is called conditionally convergent if f converges but |f| diverges

Absolute convergence preserves "regular" convergence #lemma

If |f| converges, then f also convergesProof:Let |f| convergesLet f+={ff00f<0Let f={0f0ff<00f+|f|f+ converges0f|f|f convergesf=(f+f)=f+ConvergesfConvergesf converges

Dirichlet's convergence test for integrals #theorem

Let f be a continuously differentiable, monotonically decreasing functionlimxf(x)=0Let g be continuousLet G(x)=axg(t)dt be boundedThen af(x)g(x)dx convergesProof:Let f be a continuously differentiable, monotonically decreasing functionlimxf(x)=0Let g be continuousLet G(x)=axg(t)dt be boundedaf(x)g(x)dx=limbabf(x)g(x)dxabf(x)g(x)dx=abf(x)G(x)dx=f(x)G(x)|x=ax=babf(x)G(x)dxf(x)G(x)|x=ax=b=f(b)0G(b)Boundedf(a)G(a)aa=0b0It is now enough to show that af(x)G(x)dx convergesConsequently, we can just show that a|f(x)G(x)|dx converges|G(x)|Ma|f(x)G(x)|dxMa|f(x)|dxf is monotonically decreasingf(x)<0Ma|f(x)|dx=Maf(x)dx=Mlimbabf(x)dx=Mlimbf(x)|x=ax=b==Mlimb(f(b)0f(a))=Mf(a)a|f(x)G(x)| convergesaf(x)g(x)dx converges