Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Infi-2 10
Absolute and conditional convergence
#definition
∫
f
is called absolutely convergent if
∫
|
f
|
converges
∫
f
is called conditionally convergent if
∫
f
converges but
∫
|
f
|
diverges
Absolute convergence preserves "regular" convergence
#lemma
If
∫
|
f
|
converges, then
∫
f
also converges
Proof:
Let
∫
|
f
|
converges
Let
f
+
=
{
f
f
≥
0
0
f
<
0
Let
f
−
=
{
0
f
≥
0
−
f
f
<
0
0
≤
f
+
≤
|
f
|
⟹
∫
f
+
converges
0
≤
f
−
≤
|
f
|
⟹
∫
f
−
converges
∫
f
=
∫
(
f
+
−
f
−
)
=
∫
f
+
⏟
Converges
−
∫
f
−
⏟
Converges
⟹
∫
f
converges
Dirichlet's convergence test for integrals
#theorem
Let
f
be a continuously differentiable, monotonically decreasing function
lim
x
→
∞
f
(
x
)
=
0
Let
g
be continuous
Let
G
(
x
)
=
∫
a
x
g
(
t
)
d
t
be bounded
Then
∫
a
∞
f
(
x
)
g
(
x
)
d
x
converges
Proof:
Let
f
be a continuously differentiable, monotonically decreasing function
lim
x
→
∞
f
(
x
)
=
0
Let
g
be continuous
Let
G
(
x
)
=
∫
a
x
g
(
t
)
d
t
be bounded
∫
a
∞
f
(
x
)
g
(
x
)
d
x
=
lim
b
→
∞
∫
a
b
f
(
x
)
g
(
x
)
d
x
∫
a
b
f
(
x
)
g
(
x
)
d
x
=
∫
a
b
f
(
x
)
G
′
(
x
)
d
x
=
f
(
x
)
G
(
x
)
|
x
=
a
x
=
b
−
∫
a
b
f
′
(
x
)
G
(
x
)
d
x
f
(
x
)
G
(
x
)
|
x
=
a
x
=
b
=
f
(
b
)
⏟
→
0
G
(
b
)
⏟
Bounded
−
f
(
a
)
G
(
a
)
⏟
∫
a
a
=
0
→
b
→
∞
0
It is now enough to show that
∫
a
∞
f
′
(
x
)
G
(
x
)
d
x
converges
Consequently, we can just show that
∫
a
∞
|
f
′
(
x
)
G
(
x
)
|
d
x
converges
|
G
(
x
)
|
≤
M
⟹
∫
a
∞
|
f
′
(
x
)
G
(
x
)
|
d
x
≤
M
∫
a
∞
|
f
′
(
x
)
|
d
x
f
is monotonically decreasing
⟹
f
′
(
x
)
<
0
⟹
M
∫
a
∞
|
f
′
(
x
)
|
d
x
=
−
M
∫
a
∞
f
′
(
x
)
d
x
=
−
M
lim
b
→
∞
∫
a
b
f
′
(
x
)
d
x
=
−
M
lim
b
→
∞
f
(
x
)
|
x
=
a
x
=
b
=
=
−
M
lim
b
→
∞
(
f
(
b
)
⏟
→
0
−
f
(
a
)
)
=
M
f
(
a
)
⟹
∫
a
∞
|
f
′
(
x
)
G
(
x
)
|
converges
⟹
∫
a
∞
f
(
x
)
g
(
x
)
d
x
converges