Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Infi-2 12
Function sequences
#definition
Function sequence is a sequence in which each element is a function
For example:
f
n
(
x
)
=
x
n
f
1
(
x
)
=
x
,
f
2
(
x
)
=
x
2
,
f
3
(
x
)
=
x
3
,
…
Pointwise convergence
#definition
{
f
n
(
x
)
}
is called point-convergent on set
A
if
∀
x
0
∈
A
:
∀
ε
>
0
:
∃
N
ε
:
∀
n
>
N
ε
:
|
f
n
(
x
0
)
−
f
(
x
0
)
|
<
ε
f
(
x
)
is then called a pointwise limit of
f
n
f
n
→
f
Note:
N
ε
depends both on
ε
and
x
0
∈
A
Hence pointwise convergence
f
n
(
x
)
=
x
n
on
[
0
,
1
]
x
<
1
⟹
f
n
(
x
)
=
x
n
→
0
x
=
1
⟹
f
n
(
x
)
=
1
n
=
1
→
1
f
(
x
)
=
{
0
x
∈
[
0
,
1
)
1
x
=
1
f
n
→
f
f
n
(
x
)
=
x
2
+
x
n
+
7
n
2
lim
n
→
∞
f
n
(
x
)
=
lim
n
→
∞
(
x
2
+
x
n
⏟
→
0
+
7
n
2
⏟
→
0
)
=
x
2
f
(
x
)
=
x
2
f
n
→
f
lim
n
→
∞
n
2
x
6
n
2
+
x
6
=
lim
n
→
∞
x
6
1
+
x
6
n
2
⏟
→
0
=
x
6
lim
n
→
∞
n
2
x
2
+
x
4
−
n
x
=
lim
n
→
∞
x
4
n
2
x
2
+
x
4
+
n
x
x
>
0
⟹
f
n
→
0
x
=
0
⟹
f
n
(
x
)
=
0
x
<
0
⟹
f
n
(
x
)
=
n
2
x
2
+
x
4
⏟
→
∞
−
n
x
⏟
→
−
∞
→
∞
f
(
x
)
=
0
on
[
0
,
∞
)
f
n
→
f
f
n
(
x
)
=
n
arctan
(
x
n
)
lim
n
→
∞
arctan
(
x
n
)
1
n
=
t
=
1
n
lim
t
→
0
arctan
(
t
x
)
t
=
L
lim
t
→
0
x
1
+
(
t
x
)
2
=
x
f
n
(
x
)
=
n
2
ln
(
1
+
sin
(
x
9
n
2
)
)
lim
n
→
∞
n
2
ln
(
1
+
sin
(
x
9
n
2
)
)
=
lim
n
→
∞
x
9
⋅
ln
(
1
+
sin
(
x
9
n
2
)
)
x
9
n
2
sin
(
x
9
n
2
)
⋅
sin
(
x
9
n
2
)
=
=
lim
t
→
0
x
9
⋅
ln
(
1
+
sin
(
t
)
)
sin
(
t
)
⋅
sin
(
t
)
t
=
x
9
x
=
0
⟹
f
n
(
x
)
=
0
=
x
9
f
n
(
x
)
=
sin
4
n
(
x
)
lim
n
→
∞
sin
4
n
(
x
)
=
lim
n
→
∞
(
sin
4
(
x
)
)
n
=
{
1
sin
4
(
x
)
=
1
0
sin
4
(
x
)
≠
1
=
{
1
x
=
π
2
+
π
k
0
otherwise
f
n
(
x
)
=
{
1
x
∈
[
0
,
1
n
]
0
otherwise
on
[
0
,
1
]
x
=
0
⟹
f
n
(
x
)
=
1
→
1
x
>
0
⟹
∀
n
>
1
x
:
f
n
(
x
)
=
0
→
0
⟹
f
=
{
1
x
=
0
0
otherwise
on
[
0
,
1
]
Let
f
n
→
f
Let
f
n
be continuous
Is
f
necessarily continuous?
No:
f
n
(
x
)
=
x
n
,
f
(
x
)
=
{
1
x
=
1
0
x
∈
[
0
,
1
)
Let
f
n
,
f
be differentiable
Does necessarily
f
n
′
→
f
′
?
No:
f
n
(
x
)
=
sin
(
n
8
x
)
n
→
0
f
n
′
(
x
)
=
n
7
cos
(
n
8
x
)
doesn’t converge
Let
f
n
,
f
be Riemann-integrable on
[
a
,
b
]
Does necessarily
∫
a
b
f
n
(
x
)
d
x
→
∫
a
b
f
(
x
)
d
x
?
No:
f
n
(
x
)
=
{
n
x
∈
[
0
,
1
n
]
0
otherwise
→
0
∫
0
1
f
n
(
t
)
d
t
=
∫
0
1
/
n
f
n
(
t
)
d
t
+
∫
1
n
1
f
n
(
t
)
d
t
=
n
t
|
t
=
0
t
=
1
/
n
+
C
|
t
=
1
n
t
=
1
=
1