Infi-2 12

Function sequences #definition

Function sequence is a sequence in which each element is a functionFor example:fn(x)=xnf1(x)=x,f2(x)=x2,f3(x)=x3,

Pointwise convergence #definition

{fn(x)} is called point-convergent on setA ifx0A:ε>0:Nε:n>Nε:|fn(x0)f(x0)|<εf(x) is then called a pointwise limit of fnfnfNote: Nε depends both on ε and x0AHence pointwise convergence
fn(x)=xn on [0,1]x<1fn(x)=xn0x=1fn(x)=1n=11f(x)={0x[0,1)1x=1fnf
fn(x)=x2+xn+7n2limnfn(x)=limn(x2+xn0+7n20)=x2f(x)=x2fnf
limnn2x6n2+x6=limnx61+x6n20=x6
limnn2x2+x4nx=limnx4n2x2+x4+nxx>0fn0x=0fn(x)=0x<0fn(x)=n2x2+x4nxf(x)=0 on [0,)fnf
fn(x)=narctan(xn)limnarctan(xn)1n=t=1nlimt0arctan(tx)t=Llimt0x1+(tx)2=x
fn(x)=n2ln(1+sin(x9n2))limnn2ln(1+sin(x9n2))=limnx9ln(1+sin(x9n2))x9n2sin(x9n2)sin(x9n2)==limt0x9ln(1+sin(t))sin(t)sin(t)t=x9x=0fn(x)=0=x9
fn(x)=sin4n(x)limnsin4n(x)=limn(sin4(x))n={1sin4(x)=10sin4(x)1={1x=π2+πk0otherwise
fn(x)={1x[0,1n]0otherwise on [0,1]x=0fn(x)=11x>0n>1x:fn(x)=00f={1x=00otherwise on [0,1]
Let fnfLet fn be continuousIs f necessarily continuous?No: fn(x)=xn,f(x)={1x=10x[0,1)Let fn,f be differentiableDoes necessarily fnf?No: fn(x)=sin(n8x)n0fn(x)=n7cos(n8x) doesn’t convergeLet fn,f be Riemann-integrable on [a,b]Does necessarily abfn(x)dxabf(x)dx?No: fn(x)={nx[0,1n]0otherwise001fn(t)dt=01/nfn(t)dt+1n1fn(t)dt=nt|t=0t=1/n+C|t=1nt=1=1