Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Infi-2 13
Uniform convergence
#definition
{
f
n
(
x
)
}
is called point-convergent on set
A
if
∀
ε
>
0
:
∃
N
ε
:
∀
n
>
N
ε
:
∀
x
0
∈
A
:
|
f
n
(
x
0
)
−
f
(
x
0
)
|
<
ε
f
(
x
)
is then called a uniform limit of
f
n
f
n
⇉
f
Note:
N
ε
only depends on
ε
and works for all
x
∈
A
Hence uniform convergence which is much stronger than pointwise convergence
Equivalent definitions of uniform convergence
#theorem
The following are equivalent:
1.
f
n
⇉
f
on
A
2.
Equivalent definition via sequences
3.
Equivalent definition by Cauchy
4.
d
n
=
sup
x
∈
A
|
f
n
(
x
)
−
f
(
x
)
|
,
d
n
→
0
f
n
(
x
)
=
x
n
−
x
2
n
on
[
0
,
1
]
f
n
(
x
)
→
0
sup
x
∈
[
0
,
1
]
|
f
n
(
x
)
−
f
(
x
)
|
=
sup
x
∈
[
0
,
1
]
|
x
n
−
x
2
n
|
=
sup
x
∈
[
0
,
1
]
(
x
n
−
x
2
n
)
=
max
x
∈
[
0
,
1
]
(
x
n
−
x
2
n
)
0
n
−
0
2
n
=
0
1
n
−
1
2
n
=
0
(
x
n
−
x
2
n
)
′
=
n
x
n
−
1
−
2
n
x
2
n
−
1
=
n
x
n
−
1
(
1
−
2
x
n
)
(
x
n
−
x
2
n
)
′
=
0
⟺
{
x
=
0
x
=
1
2
n
⟹
d
n
=
(
1
2
−
1
4
)
=
1
4
≠
0
⟹
f
n
⇉̸
f
Properties of uniform limit
#theorem
Let
f
n
⇉
f
1.
Continuity
Let
∀
n
:
f
n
is continuous
Then
f
is continuous
2.
Integral
Let
f
n
be integrable on
[
a
,
b
]
Then
f
is integrable on
[
a
,
b
]
and
∀
x
∈
[
a
,
b
]
:
∫
a
x
f
n
(
t
)
d
t
→
∫
a
x
f
(
t
)
d
t
3.
Differentiability
Let
f
n
,
f
be differentiable
Then not necessarily
f
n
′
→
f
′
Let
∃
x
0
∈
A
:
f
n
(
x
0
)
converges
Let
∃
g
:
f
n
′
⇉
g
Then
∃
f
:
f
n
⇉
f
and
f
′
=
g
Proof for 1.
Let
f
n
⇉
f
Let
f
n
be continuous
Let
x
0
∈
A
Let
x
n
:
x
n
→
x
0
Let
ε
1
,
ε
2
,
ε
3
>
0
:
ε
1
+
ε
2
+
ε
3
=
ε
>
0
f
n
⇉
f
⟹
∃
N
1
:
∀
n
>
N
1
:
∀
x
∈
A
:
|
f
(
x
n
)
−
f
n
(
x
n
)
|
<
ε
1
f
n
is continuous
⟹
∃
N
2
:
∀
n
>
N
2
:
∀
x
∈
A
:
|
f
n
(
x
n
)
−
f
n
(
x
0
)
|
<
ε
2
f
n
→
f
⟹
∃
N
3
:
∀
n
>
N
3
:
∀
x
∈
A
:
|
f
n
(
x
0
)
−
f
(
x
0
)
|
<
ε
3
⟹
|
f
(
x
n
)
−
f
(
x
0
)
|
=
|
f
(
x
n
)
−
f
n
(
x
n
)
+
f
n
(
x
n
)
−
f
n
(
x
0
)
+
f
n
(
x
0
)
−
f
(
x
0
)
|
≤
≤
|
f
(
x
n
)
−
f
n
(
x
n
)
|
+
|
f
n
(
x
n
)
−
f
n
(
x
0
)
|
+
|
f
n
(
x
0
)
−
f
(
x
0
)
|
<
ε
⟹
f
is continuous