Infi-2 13

Uniform convergence #definition

{fn(x)} is called point-convergent on setA ifε>0:Nε:n>Nε:x0A:|fn(x0)f(x0)|<εf(x) is then called a uniform limit of fnfnfNote: Nε only depends on ε and works for all xAHence uniform convergence which is much stronger than pointwise convergence

Equivalent definitions of uniform convergence #theorem

The following are equivalent:1.fnf on A2.Equivalent definition via sequences3.Equivalent definition by Cauchy4.dn=supxA|fn(x)f(x)|,dn0
fn(x)=xnx2n on [0,1]fn(x)0supx[0,1]|fn(x)f(x)|=supx[0,1]|xnx2n|=supx[0,1](xnx2n)=maxx[0,1](xnx2n)0n02n=01n12n=0(xnx2n)=nxn12nx2n1=nxn1(12xn)(xnx2n)=0{x=0x=12ndn=(1214)=140fn⇉̸f

Properties of uniform limit #theorem

Let fnf1.ContinuityLet n:fn is continuousThen f is continuous2.IntegralLet fn be integrable on [a,b]Then f is integrable on [a,b] and x[a,b]:axfn(t)dtaxf(t)dt3.DifferentiabilityLet fn,f be differentiableThen not necessarily fnfLet x0A:fn(x0) convergesLet g:fngThen f:fnf and f=gProof for 1.Let fnfLet fn be continuousLet x0ALet xn:xnx0Let ε1,ε2,ε3>0:ε1+ε2+ε3=ε>0fnfN1:n>N1:xA:|f(xn)fn(xn)|<ε1fn is continuousN2:n>N2:xA:|fn(xn)fn(x0)|<ε2fnfN3:n>N3:xA:|fn(x0)f(x0)|<ε3|f(xn)f(x0)|=|f(xn)fn(xn)+fn(xn)fn(x0)+fn(x0)f(x0)||f(xn)fn(xn)|+|fn(xn)fn(x0)|+|fn(x0)f(x0)|<εf is continuous