Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Infi-2 14
Equivalent definitions of uniform convergence (oscillation)
#theorem
f
n
⇉
f
⟺
d
n
→
0
Proof:
⟹
Let
f
n
⇉
f
Let
ε
>
0
∀
x
∈
A
:
∃
N
ε
:
∀
n
>
N
ε
:
|
f
n
(
x
)
−
f
(
x
)
|
<
ε
2
⟹
∃
N
ε
:
∀
n
>
N
ε
:
sup
x
∈
A
|
f
n
(
x
)
−
f
(
x
)
|
≤
ε
2
⟹
∃
N
ε
:
∀
n
>
N
ε
:
|
d
n
−
0
|
≤
ε
2
<
ε
⟹
d
n
→
0
⟸
Let
d
n
→
0
Let
ε
>
0
∃
N
ε
:
∀
n
>
N
ε
:
|
d
n
−
0
|
<
ε
⟹
∃
N
ε
:
∀
n
>
N
ε
:
sup
x
∈
A
|
f
n
(
x
)
−
f
(
x
)
|
<
ε
⟹
∀
x
∈
A
:
∃
N
ε
:
∀
n
>
N
ε
:
|
f
n
(
x
)
−
f
(
x
)
|
<
ε
⟹
f
n
⇉
f
Properties of uniform limit (integral)
#theorem
Let
f
n
be integrable on
[
a
,
b
]
Then
f
is integrable on
[
a
,
b
]
and
∀
x
∈
[
a
,
b
]
:
∫
a
x
f
n
(
t
)
d
t
⇉
∫
a
x
f
(
t
)
d
t
Proof:
Let
x
∈
[
a
,
b
]
∫
a
x
f
n
(
t
)
d
t
→
∫
a
x
f
(
t
)
d
t
⟺
∫
a
x
f
n
(
t
)
d
t
−
∫
a
x
f
(
t
)
d
t
→
0
⟺
∫
a
x
f
n
(
t
)
−
f
(
t
)
d
t
→
0
⟺
|
∫
a
x
f
n
(
t
)
−
f
(
t
)
d
t
|
→
0
⟺
|
∫
f
|
≤
∫
|
f
|
∫
a
x
|
f
n
(
t
)
−
f
(
t
)
|
d
t
→
0
⟺
|
f
n
(
t
)
−
f
(
t
)
|
≤
d
n
∫
a
x
d
n
d
t
→
0
=
d
n
⏟
→
0
⋅
(
x
−
a
)
→
0
|
∫
a
x
f
n
(
t
)
−
f
(
t
)
d
t
|
≤
d
n
(
x
−
a
)
⟹
sup
x
∈
[
a
,
b
]
|
∫
a
x
f
n
(
t
)
−
f
(
t
)
d
t
|
≤
d
n
(
x
−
a
)
⟹
sup
x
∈
[
a
,
b
]
|
∫
a
x
f
n
(
t
)
−
f
(
t
)
d
t
|
→
0
⟹
∫
a
x
f
n
(
t
)
d
t
⇉
∫
a
x
f
(
t
)
d
t
Function series
#definition
∑
n
=
1
∞
f
n
(
x
)
For example: geometric series
∑
n
=
0
∞
x
n
=
1
1
−
x
,
x
∈
(
−
1
,
1
)
S
N
(
x
)
=
∑
n
=
1
N
f
n
(
x
)
lim
N
→
∞
S
N
(
x
)
=
S
(
x
)
⟺
∑
n
=
1
∞
f
n
(
x
)
=
S
(
x
)
f
n
is continuous/differentiable/integrable
⟹
S
N
is too
And even more:
∫
S
N
=
∫
∑
n
=
0
N
f
n
=
∑
n
=
0
N
∫
f
n
=
(
∑
n
=
0
N
f
n
)
′
=
∑
n
=
0
N
f
n
′
Properties of series uniform convergence
#theorem
1.
Let
f
n
(
x
)
be continuous
Then
S
(
x
)
is also continuous
2.
Let
f
n
(
x
)
be integrable
Then
S
(
x
)
is also integrable and
∫
S
N
(
x
)
→
∫
S
(
x
)
∫
∑
n
=
0
N
f
n
(
x
)
→
∫
∑
n
=
0
∞
f
n
(
x
)
∫
a
x
∑
n
=
0
∞
f
n
(
t
)
d
t
=
∑
n
=
0
∞
∫
a
x
f
n
(
t
)
d
t
3.
Let
S
N
′
⇉
g
(
x
)
Let
∃
x
0
∈
A
:
∑
n
=
0
∞
f
n
(
x
)
→
M
Then
S
N
′
(
x
)
⇉
S
′
(
x
)
Or
∑
n
=
0
∞
f
n
′
(
x
)
⇉
(
∑
n
=
0
∞
f
n
(
x
)
)
′