Infi-2 14

Equivalent definitions of uniform convergence (oscillation) #theorem

fnfdn0Proof: Let fnfLet ε>0xA:Nε:n>Nε:|fn(x)f(x)|<ε2Nε:n>Nε:supxA|fn(x)f(x)|ε2Nε:n>Nε:|dn0|ε2<εdn0 Let dn0Let ε>0Nε:n>Nε:|dn0|<εNε:n>Nε:supxA|fn(x)f(x)|<εxA:Nε:n>Nε:|fn(x)f(x)|<εfnf

Properties of uniform limit (integral) #theorem

Let fn be integrable on [a,b]Then f is integrable on [a,b] and x[a,b]:axfn(t)dtaxf(t)dtProof:Let x[a,b]axfn(t)dtaxf(t)dtaxfn(t)dtaxf(t)dt0axfn(t)f(t)dt0|axfn(t)f(t)dt|0|f||f|ax|fn(t)f(t)|dt0|fn(t)f(t)|dnaxdndt0=dn0(xa)0|axfn(t)f(t)dt|dn(xa)supx[a,b]|axfn(t)f(t)dt|dn(xa)supx[a,b]|axfn(t)f(t)dt|0axfn(t)dtaxf(t)dt

Function series #definition

n=1fn(x)For example: geometric series n=0xn=11x,x(1,1)SN(x)=n=1Nfn(x)limNSN(x)=S(x)n=1fn(x)=S(x)fn is continuous/differentiable/integrableSN is tooAnd even more: SN=n=0Nfn=n=0Nfn=(n=0Nfn)=n=0Nfn

Properties of series uniform convergence #theorem

1.Let fn(x) be continuousThen S(x) is also continuous2.Let fn(x) be integrableThen S(x) is also integrable andSN(x)S(x)n=0Nfn(x)n=0fn(x)axn=0fn(t)dt=n=0axfn(t)dt3. Let SNg(x)Let x0A:n=0fn(x)MThen SN(x)S(x)Or n=0fn(x)(n=0fn(x))