Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Infi-2 15
Uniform convergence of function series
S
N
⇉
S
⟺
d
N
=
sup
x
∈
A
|
S
N
(
x
)
−
S
(
x
)
|
=
sup
x
∈
A
|
∑
n
=
1
N
f
n
(
x
)
−
∑
n
=
1
∞
f
n
(
x
)
|
=
=
sup
x
∈
A
|
∑
n
=
N
+
1
∞
f
n
(
x
)
|
=
sup
x
∈
A
|
r
N
|
∑
n
=
0
∞
x
n
=
1
1
−
x
,
x
∈
(
−
1
,
1
)
d
N
=
sup
x
∈
(
−
1
,
1
)
|
∑
n
=
N
+
1
∞
x
n
|
∑
n
=
N
+
1
∞
x
n
=
x
N
+
1
+
x
N
+
2
+
⋯
=
x
N
+
1
⋅
∑
n
=
0
∞
x
n
=
x
N
+
1
1
−
x
⟹
d
N
=
sup
x
∈
(
−
1
,
1
)
|
x
N
+
1
1
−
x
|
x
→
1
⟹
x
N
+
1
1
−
x
→
∞
⟹
d
N
↛
0
⟹
∑
n
=
0
∞
x
n
⇉̸
1
1
−
x
x
∈
[
0
,
1
23
]
⟹
d
N
=
sup
x
∈
[
0
,
1
23
]
|
x
N
+
1
1
−
x
|
=
(
1
23
)
N
+
1
1
−
1
23
→
0
Weierstrass M-test
#theorem
Let
∑
n
=
1
∞
f
n
(
x
)
Let
∑
n
=
1
∞
a
n
→
M
Let
∀
n
∈
N
,
∀
x
∈
A
:
|
f
n
|
≤
a
n
Then
∑
n
=
1
∞
f
n
(
x
)
⇉
S
(
x
)
And
∑
n
=
1
∞
|
f
n
(
x
)
|
⇉
S
(
x
)
Proof:
∑
n
=
1
∞
a
n
converges
⟹
∀
ε
>
0
:
∃
N
ε
:
∀
M
>
N
>
N
ε
:
S
M
−
S
N
<
ε
2
Let
ε
>
0
∀
x
∈
A
:
∀
m
>
n
>
N
ε
:
|
S
M
(
x
)
−
S
N
(
x
)
|
=
|
∑
n
=
N
+
1
M
f
n
(
x
)
|
≤
∑
n
=
N
+
1
M
|
f
n
(
x
)
|
≤
≤
∑
n
=
N
+
1
M
a
n
=
S
M
−
S
N
<
ε
2
Let
N
>
N
ε
|
S
(
x
)
−
S
N
(
x
)
|
=
|
lim
M
→
∞
S
M
(
x
)
−
S
N
(
x
)
|
=
lim
M
→
∞
|
S
M
(
x
)
−
S
N
(
x
)
|
≤
ε
2
<
ε
⟹
S
N
(
x
)
⇉
S
(
x
)
⟹
∑
n
=
1
∞
f
n
(
x
)
⇉
S
(
x
)
Similar proof for
∑
n
=
1
∞
|
f
n
(
x
)
|
⇉
S
(
x
)
∑
n
=
0
∞
x
n
=
1
1
−
x
⟹
∑
n
=
0
∞
n
x
n
−
1
=
1
(
1
−
x
)
2
⟹
∑
n
=
0
∞
n
x
n
=
x
(
1
−
x
)
2
x
=
1
2
⟹
∑
n
=
0
∞
n
2
n
=
1
2
(
1
2
)
2
=
2
Why can we do this?
If
∑
n
=
0
∞
(
x
n
)
′
⇉
g
(
x
)
,
x
∈
A
∃
x
0
∈
A
:
∑
n
=
0
∞
x
0
n
→
M
Then
∑
n
=
0
∞
(
x
n
)
′
⇉
(
1
1
−
x
)
′
Let
A
=
[
0
,
1
2
]
∀
x
0
∈
A
:
∑
n
=
0
∞
x
0
n
→
M
x
0
∀
n
∈
N
,
∀
x
∈
A
:
|
n
x
n
−
1
|
=
n
x
n
−
1
≤
n
⋅
(
1
2
)
n
−
1
=
n
2
n
−
1
lim
n
→
∞
n
2
n
−
1
n
=
lim
n
→
∞
2
n
⋅
n
n
2
n
n
=
1
⋅
1
2
=
1
2
⟹
∑
n
=
0
∞
n
2
n
−
1
→
M
⟹
By the Weierstrass M-test
∑
n
=
0
∞
n
x
n
−
1
⇉
g
(
x
)
⟹
∑
n
=
0
∞
(
x
n
)
′
⇉
(
1
1
−
x
)
′