Infi-2 15

Uniform convergence of function series

SNSdN=supxA|SN(x)S(x)|=supxA|n=1Nfn(x)n=1fn(x)|==supxA|n=N+1fn(x)|=supxA|rN|n=0xn=11x,x(1,1)dN=supx(1,1)|n=N+1xn|n=N+1xn=xN+1+xN+2+=xN+1n=0xn=xN+11xdN=supx(1,1)|xN+11x|x1xN+11xdN0n=0xn⇉̸11xx[0,123]dN=supx[0,123]|xN+11x|=(123)N+111230

Weierstrass M-test #theorem

Let n=1fn(x)Let n=1anMLet nN,xA:|fn|anThen n=1fn(x)S(x)And n=1|fn(x)|S(x)Proof:n=1an convergesε>0:Nε:M>N>Nε:SMSN<ε2Let ε>0xA:m>n>Nε:|SM(x)SN(x)|=|n=N+1Mfn(x)|n=N+1M|fn(x)|n=N+1Man=SMSN<ε2Let N>Nε|S(x)SN(x)|=|limMSM(x)SN(x)|=limM|SM(x)SN(x)|ε2<εSN(x)S(x)n=1fn(x)S(x)Similar proof for n=1|fn(x)|S(x)n=0xn=11xn=0nxn1=1(1x)2n=0nxn=x(1x)2x=12n=0n2n=12(12)2=2Why can we do this?If n=0(xn)g(x),xAx0A:n=0x0nMThen n=0(xn)(11x)Let A=[0,12]x0A:n=0x0nMx0nN,xA:|nxn1|=nxn1n(12)n1=n2n1limnn2n1n=limn2nnn2nn=112=12n=0n2n1MBy the Weierstrass M-test n=0nxn1g(x)n=0(xn)(11x)