Infi-2 16

Power series #definition

n=0an(xa)nWhere an does not depend on xis called a power series in the neighborhood of a

Convergence domain(interval) #definition

Convergence domain is a set X such that:IX:n=0fn(x) converges pointwise on I

Convergence domain of a power series #lemma

Convergence domain of n=0an(xa)n can be one of three options:1.R, for example n=0xnn!2.{a}, for example n=0n!xn3.Interval, that is symmetric around a

Convergence radius #lemma

Let RR:n=0an(xa)n converges on (aR,a+R)and diverges if x(,aR)(a+R,)R is then called a convergence radius of power seriesAnd there are no "holes" in the convergence domainNote: endpoints of convergence might be included or excludedProof:Let b(aR,a+R)Let |ca|<|ba|Let n=0an(ba)n convergesn=0|an(ca)n|=n=0|an(ca)n(ba)n(ba)n|==n=0|an(ba)n||caba|nan(ba)nn0|an(ba)n|n0n>N:|an(ba)n|<1n>N:|an(ba)n||caba|n<|caba|n|caba|<1n=0|caba|n convergesn=0|an(ba)n||caba|n convergesn=0|an(ca)n| converges

Determining convergence radius

Let n=0an(xa)nLet L=limn|an+1(xa)n+1an(xa)n|==limn|an+1an||xa|=|xa|limn|an+1an|Let t=limn|an+1an|t|xa|<1Series convergest|xa|>1Series divergesSeries converges|xa|<1tR=1t=1limn|an+1an|Note: We can also write R=1limn|an|nlimn|an+1an|=0R=limn|an+1an|=R=0limn|an+1an|?n=0(1)n(2n)!x2nan={0n=2k1(1)n(2n)!n=2k???Let t=x2n=0(1)n(2n)!tnR=limn12n+1=0