Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Infi-2 16
Power series
#definition
∑
n
=
0
∞
a
n
(
x
−
a
)
n
Where
a
n
does not depend on
x
is called a power series in the neighborhood of
a
Convergence domain(interval)
#definition
Convergence domain is a set
X
such that:
∀
I
⊆
X
:
∑
n
=
0
∞
f
n
(
x
)
converges pointwise on
I
Convergence domain of a power series
#lemma
Convergence domain of
∑
n
=
0
∞
a
n
(
x
−
a
)
n
can be one of three options:
1.
R
,
for example
∑
n
=
0
∞
x
n
n
!
2.
{
a
}
,
for example
∑
n
=
0
∞
n
!
x
n
3.
Interval, that is symmetric around
a
Convergence radius
#lemma
Let
R
∈
R
:
∑
n
=
0
∞
a
n
(
x
−
a
)
n
converges on
(
a
−
R
,
a
+
R
)
and diverges if
x
∈
(
−
∞
,
a
−
R
)
∪
(
a
+
R
,
∞
)
R
is then called a convergence radius of power series
And there are no "holes" in the convergence domain
Note: endpoints of convergence might be included or excluded
Proof:
Let
b
∈
(
a
−
R
,
a
+
R
)
Let
|
c
−
a
|
<
|
b
−
a
|
Let
∑
n
=
0
∞
a
n
(
b
−
a
)
n
converges
∑
n
=
0
∞
|
a
n
(
c
−
a
)
n
|
=
∑
n
=
0
∞
|
a
n
(
c
−
a
)
n
(
b
−
a
)
n
(
b
−
a
)
n
|
=
=
∑
n
=
0
∞
|
a
n
(
b
−
a
)
n
|
⋅
|
c
−
a
b
−
a
|
n
a
n
(
b
−
a
)
n
→
n
→
∞
0
⟹
|
a
n
(
b
−
a
)
n
|
→
n
→
∞
0
⟹
∀
n
>
N
:
|
a
n
(
b
−
a
)
n
|
<
1
∀
n
>
N
:
|
a
n
(
b
−
a
)
n
|
⋅
|
c
−
a
b
−
a
|
n
<
|
c
−
a
b
−
a
|
n
|
c
−
a
b
−
a
|
<
1
⟹
∑
n
=
0
∞
|
c
−
a
b
−
a
|
n
converges
⟹
∑
n
=
0
∞
|
a
n
(
b
−
a
)
n
|
⋅
|
c
−
a
b
−
a
|
n
converges
⟹
∑
n
=
0
∞
|
a
n
(
c
−
a
)
n
|
converges
⟹
Determining convergence radius
Let
∑
n
=
0
∞
a
n
(
x
−
a
)
n
Let
L
=
lim
n
→
∞
|
a
n
+
1
(
x
−
a
)
n
+
1
a
n
(
x
−
a
)
n
|
=
=
lim
n
→
∞
|
a
n
+
1
a
n
|
⋅
|
x
−
a
|
=
|
x
−
a
|
⋅
lim
n
→
∞
|
a
n
+
1
a
n
|
Let
t
=
lim
n
→
∞
|
a
n
+
1
a
n
|
t
⋅
|
x
−
a
|
<
1
⟹
Series converges
t
⋅
|
x
−
a
|
>
1
⟹
Series diverges
⟹
Series converges
⟺
|
x
−
a
|
<
1
t
⟹
R
=
1
t
=
1
lim
n
→
∞
|
a
n
+
1
a
n
|
Note:
We can also write
R
=
1
lim
n
→
∞
|
a
n
|
n
lim
n
→
∞
|
a
n
+
1
a
n
|
=
0
⟹
R
=
∞
lim
n
→
∞
|
a
n
+
1
a
n
|
=
∞
⟹
R
=
0
∄
lim
n
→
∞
|
a
n
+
1
a
n
|
⟹
?
∑
n
=
0
∞
(
−
1
)
n
(
2
n
)
!
x
2
n
a
n
=
{
0
n
=
2
k
−
1
(
−
1
)
n
(
2
n
)
!
n
=
2
k
?
?
?
Let
t
=
x
2
∑
n
=
0
∞
(
−
1
)
n
(
2
n
)
!
t
n
R
=
lim
n
→
∞
1
2
n
+
1
=
0