Infi-2 17

Uniform convergence of power series #lemma

n=0an(xa)n converges at least pointwise on (aR,a+R)By Weierstrass M-test, absolute convergence implies uniform convergence[b,c](aR,a+R):n=0an(xa)n converges uniformly on [b,c]

Differentiation and integration of power series #lemma

Differentiation and integration of power series does not affect the convergence radiusn=0n2n=n=0n(12)nn=0xn=11xn=0nxn1=1(1x)2n=0nxn=x(1x)2n=0n(12)n=12(1(12))2=2
n=0xn=11xx(1,1)n=0xn+1n+1=ln|1x|Series converges for x=1But does it converge to ln|1x|?Turns out yes!S(1)=limx1S(x)=limx1ln|1x|=ln(2)

Uniform convergence on convergence interval edges #lemma

Power series converges uniformly on edges of convergence interval too!

Taylor series

Equality "series = function" allows us to calculate sums

For example

ex=n=0xnn!xRe=n=01n!