Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Infi-2 2-3
Variable substitution in integrals
#lemma
When there is a pattern in the integral, being function
f
(
x
)
and it’s derivative
We will use variable substitution:
Let
t
=
f
(
x
)
t
′
d
t
=
f
′
(
x
)
d
x
⟹
d
t
=
f
′
(
x
)
d
x
For example:
∫
7
arctan
(
x
)
x
2
+
1
d
x
(
arctan
(
x
)
)
′
=
1
x
2
+
1
⟹
∫
7
arctan
(
x
)
x
2
+
1
d
x
=
⏟
f
(
x
)
=
arctan
(
x
)
7
∫
f
(
x
)
f
′
(
x
)
d
x
=
=
⏟
t
=
f
(
x
)
7
∫
t
d
t
=
7
t
2
2
+
C
=
7
arctan
2
(
x
)
2
+
C
Another example:
∫
6
ln
(
sin
x
)
cos
3
(
x
)
d
x
Let
t
=
sin
x
⟹
d
t
=
cos
(
x
)
d
x
⟹
∫
6
ln
(
sin
x
)
cos
3
(
x
)
d
x
=
6
∫
ln
(
t
)
(
1
−
t
2
)
d
t
Let
f
(
t
)
=
ln
(
t
)
⟹
f
′
(
t
)
=
1
t
Let
g
′
(
t
)
=
1
−
t
2
⟹
g
(
t
)
=
t
−
t
3
3
⟹
6
∫
ln
(
t
)
(
1
−
t
2
)
d
t
=
6
(
ln
(
t
)
(
t
−
t
3
3
)
)
−
6
∫
(
1
−
t
2
3
)
d
t
=
=
6
t
ln
(
t
)
−
2
t
3
ln
(
t
)
−
6
t
+
2
t
3
3
+
C
=
=
6
sin
(
x
)
ln
(
sin
x
)
−
2
sin
3
(
x
)
ln
(
sin
x
)
−
6
sin
(
x
)
+
2
sin
3
(
x
)
3
+
C
We can also substitute in a more complex way:
g
(
t
)
=
f
(
x
)
⟹
g
′
(
t
)
d
t
=
f
′
(
x
)
d
x
For example:
∫
7
−
x
2
d
x
∫
7
−
x
2
d
x
=
7
∫
1
−
(
x
7
)
2
d
x
Let
sin
t
=
x
7
⟹
cos
(
t
)
d
t
=
d
x
7
⟹
d
x
=
7
cos
(
t
)
d
t
⟹
7
∫
1
−
(
x
7
)
2
d
x
=
7
∫
1
−
sin
2
(
x
)
d
x
=
7
∫
cos
2
(
x
)
d
x
=
=
7
∫
cos
2
(
t
)
d
t
=
7
∫
1
+
cos
(
2
t
)
2
d
t
=
7
2
(
t
+
sin
(
2
t
)
2
)
+
C
=
=
7
2
(
arcsin
(
x
7
)
+
sin
(
2
arcsin
(
x
7
)
)
2
)
+
C
Linear function composition integral
#lemma
∫
f
(
x
)
d
x
=
F
(
x
)
+
C
⟹
∫
f
(
a
x
+
b
)
d
x
=
1
a
F
(
a
x
+
b
)
+
C
Proof:
Let
t
=
a
x
+
b
⟹
d
t
=
a
d
x
⟹
∫
f
(
a
x
+
b
)
d
x
=
∫
f
(
t
)
a
d
t
=
1
a
F
(
t
)
+
C
=
1
a
F
(
a
x
+
b
)
+
C
Example:
∫
3
x
d
x
=
3
x
ln
(
3
)
+
C
⟹
∫
3
18
x
−
5
d
x
=
1
18
3
18
x
−
5
ln
(
3
)
+
C
Integral of a rational function (polynomial fractions)
#lemma
∫
p
(
x
)
q
(
x
)
d
x
There are usually three steps:
1.
Division of polynomials
2.
Partial fraction decomposition
3.
Integration of partial fractions
Division of polynomials:
1.1
Divide highest degree of nominator by highest degree of denominator
1.2
Multiply result by denominator
1.3
Subtract result from nminator
1.4
Repear until degree of nominator is greater or equal to degree of denominator
For example:
x
9
+
6
x
2
+
6
x
4
−
1
x
9
x
4
=
x
5
⋅
(
x
4
−
1
)
⟹
x
9
−
x
5
x
9
+
6
x
2
+
6
−
x
9
−
x
5
=
x
5
+
6
x
2
+
6
x
5
x
4
=
x
⋅
(
x
4
−
1
)
⟹
x
5
−
x
x
5
+
6
x
2
+
6
−
x
5
−
x
=
6
x
2
+
x
+
6
⟹
x
9
+
6
x
2
+
6
=
x
5
+
x
+
6
x
2
+
x
+
6
x
4
−
1
Partial fraction decomposition:
Any polynomial can be decomposed into product of non-decomposable
polynomials of smaller degree
Non-decomposable polynomial is a polynomial that cannot be represented as a product
of polynomials of smaller degrees
A non-trivial example would be:
x
4
+
1
=
x
4
+
2
x
2
+
1
−
2
x
2
=
(
x
2
+
1
)
2
−
2
x
2
=
(
x
2
+
1
−
2
x
)
(
x
2
+
1
+
2
x
)
In our case:
x
4
−
1
=
(
x
2
−
1
)
(
x
2
+
1
)
=
(
x
−
1
)
(
x
+
1
)
(
x
2
+
1
)
⟹
6
x
2
+
x
+
6
x
4
−
1
=
6
x
2
+
x
+
6
(
x
−
1
)
(
x
+
1
)
(
x
2
+
1
)
=
.
x
−
1
+
.
x
+
1
+
.
x
2
+
1
How do we calculate nominators now?
If denominator is linear, nominator will be a constant
If denominator is of second degree, nominator will be linear
⟹
6
x
2
+
x
+
6
x
4
−
1
=
A
x
−
1
+
B
x
+
1
+
C
x
+
D
x
2
+
1
6
x
2
+
x
+
6
=
A
(
x
+
1
)
(
x
2
+
1
)
+
B
(
x
−
1
)
(
x
2
+
1
)
+
(
C
x
+
D
)
(
x
2
−
1
)
Let
x
=
1
13
=
4
A
⟹
A
=
13
4
Let
x
=
−
1
11
=
−
4
B
⟹
B
=
−
11
4
A
+
B
+
C
=
0
⟹
C
=
−
2
4
p
(
x
)
(
x
−
1
)
3
(
x
+
1
)
=
A
x
2
+
B
x
+
C
(
x
−
1
)
3
+
D
x
+
1
A
x
2
−
2
A
x
+
A
(
x
−
1
)
3
=
A
(
x
−
1
)
2
(
x
−
1
)
3
=
A
x
−
1
⟹
A
x
2
+
B
x
+
C
(
x
−
1
)
3
=
A
x
−
1
+
B
x
+
2
A
x
+
C
−
A
(
x
−
1
)
3
B
x
+
2
A
x
−
B
−
2
A
(
x
−
1
)
3
=
B
+
2
A
(
x
−
1
)
2
⟹
B
x
+
2
A
x
+
C
−
A
(
x
−
1
)
3
=
B
+
2
A
(
x
−
1
)
2
+
−
B
−
C
−
A
(
x
−
1
)
3
⟹
A
x
2
+
B
x
+
C
(
x
−
1
)
3
=
A
x
−
1
+
B
+
2
A
(
x
−
1
)
2
+
−
(
A
+
B
+
C
)
(
x
−
1
)
3
=
=
A
1
x
−
1
+
A
2
(
x
−
1
)
2
+
A
3
(
x
−
1
)
3
Table of common denominators in partial fractions
#lemma
This results in a following table of denominators and their decompositions
p
(
x
)
a
x
+
b
A
a
x
+
b
p
(
x
)
(
a
x
+
b
)
k
∑
i
=
1
k
A
i
(
a
x
+
b
)
i
p
(
x
)
a
x
2
+
b
x
+
c
A
x
+
B
a
x
2
+
b
x
+
c
p
(
x
)
(
a
x
2
+
b
x
+
c
)
k
∑
i
=
1
k
A
i
x
+
B
i
(
a
x
2
+
b
x
+
c
)
i
Integration of partial fractions:
∫
A
a
x
+
b
d
x
=
A
a
ln
|
a
x
+
b
|
+
C
∫
A
(
a
x
+
b
)
k
d
x
=
A
(
a
x
+
b
)
1
−
k
1
−
k
+
C
∫
A
x
+
B
a
x
2
+
b
x
+
c
d
x
=
Generally not in this course, but it is written below
∫
A
x
+
b
(
a
x
2
+
b
x
+
c
)
k
d
x
=
Generally not in this course
Specific cases of
A
x
+
B
a
x
2
+
b
x
+
c
:
∫
1
(
x
+
a
)
2
+
b
2
d
x
=
1
b
∫
1
(
x
+
a
b
)
2
+
1
=
1
b
arctan
(
x
+
a
b
)
+
C
∫
p
′
(
x
)
p
(
x
)
d
x
=
∫
1
p
d
p
=
ln
|
p
(
x
)
|
+
C
∫
3
x
+
1
x
2
+
2
x
+
6
d
x
=
3
2
∫
(
2
x
+
2
3
)
x
2
+
2
x
+
6
d
x
=
=
3
2
∫
2
x
+
2
2
x
2
+
2
x
+
6
d
x
−
2
∫
1
x
2
+
2
x
+
6
d
x
=
=
3
2
ln
|
2
x
2
+
2
x
+
6
|
−
2
∫
1
x
2
+
2
x
+
6
d
x
x
2
+
2
x
+
5
=
(
x
+
1
)
2
+
5
⟹
∫
1
x
2
+
2
x
+
6
d
x
=
∫
1
(
x
+
1
)
2
+
(
5
)
2
d
x
=
1
5
arctan
(
x
+
1
5
)
+
C
(
a
x
2
+
b
x
+
c
)
′
=
2
a
x
+
b
A
x
+
B
a
x
2
+
b
x
+
c
=
A
2
a
⋅
2
a
x
+
b
+
2
a
B
A
−
b
a
x
2
+
b
x
+
c
=
A
2
a
2
a
x
+
b
a
x
2
+
b
x
+
c
+
(
B
−
A
b
2
a
)
1
a
x
2
+
b
x
+
c
1
a
x
2
+
b
x
+
c
=
1
(
a
x
+
b
2
a
)
2
+
(
c
−
b
2
4
a
)
=
…
∫
A
x
+
B
a
x
2
+
b
x
+
c
d
x
=
A
2
a
ln
|
a
x
2
+
b
x
+
c
|
+
(
A
b
−
2
B
a
)
arctan
(
2
a
x
+
b
4
a
c
−
b
2
)
a
4
a
c
−
b
2
+
C