Infi-2 2-3

Variable substitution in integrals #lemma

When there is a pattern in the integral, being function f(x)and it’s derivativeWe will use variable substitution:Let t=f(x)tdt=f(x)dxdt=f(x)dxFor example:7arctan(x)x2+1dx(arctan(x))=1x2+17arctan(x)x2+1dx=f(x)=arctan(x)7f(x)f(x)dx==t=f(x)7tdt=7t22+C=7arctan2(x)2+CAnother example:6ln(sinx)cos3(x)dxLet t=sinxdt=cos(x)dx6ln(sinx)cos3(x)dx=6ln(t)(1t2)dtLet f(t)=ln(t)f(t)=1tLet g(t)=1t2g(t)=tt336ln(t)(1t2)dt=6(ln(t)(tt33))6(1t23)dt==6tln(t)2t3ln(t)6t+2t33+C==6sin(x)ln(sinx)2sin3(x)ln(sinx)6sin(x)+2sin3(x)3+CWe can also substitute in a more complex way:g(t)=f(x)g(t)dt=f(x)dxFor example:7x2dx7x2dx=71(x7)2dxLet sint=x7cos(t)dt=dx7dx=7cos(t)dt71(x7)2dx=71sin2(x)dx=7cos2(x)dx==7cos2(t)dt=71+cos(2t)2dt=72(t+sin(2t)2)+C==72(arcsin(x7)+sin(2arcsin(x7))2)+C

Linear function composition integral #lemma

f(x)dx=F(x)+Cf(ax+b)dx=1aF(ax+b)+CProof:Let t=ax+bdt=adxf(ax+b)dx=f(t)adt=1aF(t)+C=1aF(ax+b)+CExample:3xdx=3xln(3)+C318x5dx=118318x5ln(3)+C

Integral of a rational function (polynomial fractions) #lemma

p(x)q(x)dxThere are usually three steps:1.Division of polynomials2.Partial fraction decomposition3.Integration of partial fractionsDivision of polynomials:1.1Divide highest degree of nominator by highest degree of denominator1.2Multiply result by denominator1.3Subtract result from nminator1.4Repear until degree of nominator is greater or equal to degree of denominatorFor example:x9+6x2+6x41x9x4=x5(x41)x9x5x9+6x2+6x9x5=x5+6x2+6x5x4=x(x41)x5xx5+6x2+6x5x=6x2+x+6x9+6x2+6=x5+x+6x2+x+6x41Partial fraction decomposition:Any polynomial can be decomposed into product of non-decomposablepolynomials of smaller degreeNon-decomposable polynomial is a polynomial that cannot be represented as a productof polynomials of smaller degreesA non-trivial example would be:x4+1=x4+2x2+12x2=(x2+1)22x2=(x2+12x)(x2+1+2x)In our case:x41=(x21)(x2+1)=(x1)(x+1)(x2+1)6x2+x+6x41=6x2+x+6(x1)(x+1)(x2+1)=.x1+.x+1+.x2+1How do we calculate nominators now?If denominator is linear, nominator will be a constantIf denominator is of second degree, nominator will be linear6x2+x+6x41=Ax1+Bx+1+Cx+Dx2+16x2+x+6=A(x+1)(x2+1)+B(x1)(x2+1)+(Cx+D)(x21)Let x=113=4AA=134Let x=111=4BB=114A+B+C=0C=24p(x)(x1)3(x+1)=Ax2+Bx+C(x1)3+Dx+1Ax22Ax+A(x1)3=A(x1)2(x1)3=Ax1Ax2+Bx+C(x1)3=Ax1+Bx+2Ax+CA(x1)3Bx+2AxB2A(x1)3=B+2A(x1)2Bx+2Ax+CA(x1)3=B+2A(x1)2+BCA(x1)3Ax2+Bx+C(x1)3=Ax1+B+2A(x1)2+(A+B+C)(x1)3==A1x1+A2(x1)2+A3(x1)3

Table of common denominators in partial fractions #lemma

This results in a following table of denominators and their decompositionsp(x)ax+bAax+bp(x)(ax+b)ki=1kAi(ax+b)ip(x)ax2+bx+cAx+Bax2+bx+cp(x)(ax2+bx+c)ki=1kAix+Bi(ax2+bx+c)iIntegration of partial fractions:Aax+bdx=Aaln|ax+b|+CA(ax+b)kdx=A(ax+b)1k1k+CAx+Bax2+bx+cdx=Generally not in this course, but it is written belowAx+b(ax2+bx+c)kdx=Generally not in this courseSpecific cases of Ax+Bax2+bx+c:1(x+a)2+b2dx=1b1(x+ab)2+1=1barctan(x+ab)+Cp(x)p(x)dx=1pdp=ln|p(x)|+C3x+1x2+2x+6dx=32(2x+23)x2+2x+6dx==322x+22x2+2x+6dx21x2+2x+6dx==32ln|2x2+2x+6|21x2+2x+6dxx2+2x+5=(x+1)2+51x2+2x+6dx=1(x+1)2+(5)2dx=15arctan(x+15)+C(ax2+bx+c)=2ax+bAx+Bax2+bx+c=A2a2ax+b+2aBAbax2+bx+c=A2a2ax+bax2+bx+c+(BAb2a)1ax2+bx+c1ax2+bx+c=1(ax+b2a)2+(cb24a)=Ax+Bax2+bx+cdx=A2aln|ax2+bx+c|+(Ab2Ba)arctan(2ax+b4acb2)a4acb2+C