Infi-2 3-4

Definite integrals

Riemann sum #definition

Let [a,b]RLet P={x0,x1,,xn}a=x0<x1<<xn=bLet C={ci|i[1,n]:ci[xi1+xi]}Let Δxi=xi1xiSR(f,P,C)=i=1nf(ci)(xixi1)=i=1nf(ci)ΔxiSR(f,P,C) is called a Riemann sum and is an approximation of area under function fThis sum is the best approximation when all chosen rectangles’ areas tend to 0Let λ(P)=max{Δxi}When λ(P) tends to 0, all Δx tend to 0 and thus all rectangles’ areas tend to 0

Riemann-Integrable function #definition

Let f be a function on [a,b]f is called integrable by Riemann if:1.f is bounded2.P,C:SR(f,P,C)λ(P)0LSame definition via sequences:f is integrable on[a,b] if {Pn}:λ(Pn)n0:{Cn}:SR(f,Pn,Cn)L

Definite integral #definition

If such limit L exists, it is called definite integral of f on [a,b]And denoted as abf(x)dx=L

Example

Let f(x)=C on [a,b]SR(f,P,C)=i=1nCΔxi=Ci=1nΔxiP,C:i=1nΔxi=i=1n[xixi1]=xnx0=baabf(x)dx=C(ba)

Oscillation of a function #definition

Let f be a bounded function on I (for example on [a,b])Oscillation of f is a measure of how function varies between its extreme valuesAnd is denoted as ω(I)=supfinff

Lebesgue criterion of Riemann-Integrability #theorem

Let f be a bounded function on [a,b]Then f is integrable on [a,b] iff{Pn}:λ(Pn)n0:i=1nωiΔxi0Where i[1,n]:wi=ω([xi,xi1])Exaplanation (not proof): Let f be integrable on [a,b]All Riemann sums tend to Li=1nωiΔxi=i=1n(sup[xi1,xi]finf[xi1,xi]f)Δxi==i=1nsup[xi1,xi]fΔxiUpper Riemann sumi=1ninf[xi1,xi]fΔxiLower Riemann sumLL=0Why is it not formal proof:There might be no point ci such that f(ci)=sup[xi1,xi]fThese sums might not be Riemann sums at all Let {Pn}:λ(Pn)n0:i=1nωiΔxi0i=1nωiΔxi=i=1n(sup[xi1,xi]finf[xi1,xi]f)Δxi=i=1nsup[xi1,xi]fΔxii=1ninf[xi1,xi]fΔxii=1nωiΔxi0{i=1nsup[xi1,xi]fΔxiLi=1ninf[xi1,xi]fΔxiLci[xi1,xi]inf[xi1,xi]ff(ci)sup[xi1,xi]fi=1ninf[xi1,xi]fΔxiLSR(f,P,C)i=1nsup[xi1,xi]fΔxiLSR(f,P,C)Lf is Riemann-integrableWhy is it not formal proof:xnyn0{xnLynLxn and yn might not have a limit at all