Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Infi-2 3-4
Definite integrals
Riemann sum
#definition
Let
[
a
,
b
]
⊆
R
Let
P
=
{
x
0
,
x
1
,
…
,
x
n
}
a
=
x
0
<
x
1
<
⋯
<
x
n
=
b
Let
C
=
{
c
i
|
∀
i
∈
[
1
,
n
]
:
c
i
∈
[
x
i
−
1
+
x
i
]
}
Let
Δ
x
i
=
x
i
−
1
−
x
i
S
R
(
f
,
P
,
C
)
=
∑
i
=
1
n
f
(
c
i
)
⋅
(
x
i
−
x
i
−
1
)
=
∑
i
=
1
n
f
(
c
i
)
Δ
x
i
S
R
(
f
,
P
,
C
)
is called a Riemann sum and is an approximation of area under function
f
This sum is the best approximation when all chosen rectangles’ areas tend to
0
Let
λ
(
P
)
=
max
{
Δ
x
i
}
When
λ
(
P
)
tends to
0
,
all
Δ
x
tend to
0
and thus all rectangles’ areas tend to
0
Riemann-Integrable function
#definition
Let
f
be a function on
[
a
,
b
]
f
is called integrable by Riemann if:
1.
f
is bounded
2.
∀
P
,
C
:
S
R
(
f
,
P
,
C
)
→
λ
(
P
)
→
0
L
Same definition via sequences:
f
is integrable on
[
a
,
b
]
if
∀
{
P
n
}
:
λ
(
P
n
)
→
⏟
n
→
∞
0
:
∀
{
C
n
}
:
S
R
(
f
,
P
n
,
C
n
)
→
L
Definite integral
#definition
If such limit
L
exists, it is called definite integral of
f
on
[
a
,
b
]
And denoted as
∫
a
b
f
(
x
)
d
x
=
L
Example
Let
f
(
x
)
=
C
on
[
a
,
b
]
S
R
(
f
,
P
,
C
)
=
∑
i
=
1
n
C
Δ
x
i
=
C
∑
i
=
1
n
Δ
x
i
∀
P
,
C
:
∑
i
=
1
n
Δ
x
i
=
∑
i
=
1
n
[
x
i
−
x
i
−
1
]
=
x
n
−
x
0
=
b
−
a
⟹
∫
a
b
f
(
x
)
d
x
=
C
(
b
−
a
)
Oscillation of a function
#definition
Let
f
be a bounded function on
I
(for example on
[
a
,
b
]
)
Oscillation of
f
is a measure of how function varies between its extreme values
And is denoted as
ω
(
I
)
=
sup
f
−
inf
f
Lebesgue criterion of Riemann-Integrability
#theorem
Let
f
be a bounded function on
[
a
,
b
]
Then
f
is integrable on
[
a
,
b
]
iff
∀
{
P
n
}
:
λ
(
P
n
)
→
n
→
∞
0
:
∑
i
=
1
n
ω
i
Δ
x
i
→
0
Where
∀
i
∈
[
1
,
n
]
:
w
i
=
ω
(
[
x
i
,
x
i
−
1
]
)
Exaplanation (not proof):
⟹
Let
f
be integrable on
[
a
,
b
]
⟹
All Riemann sums tend to
L
∑
i
=
1
n
ω
i
Δ
x
i
=
∑
i
=
1
n
(
sup
[
x
i
−
1
,
x
i
]
f
−
inf
[
x
i
−
1
,
x
i
]
f
)
Δ
x
i
=
=
∑
i
=
1
n
sup
[
x
i
−
1
,
x
i
]
f
Δ
x
i
⏟
Upper Riemann sum
−
∑
i
=
1
n
inf
[
x
i
−
1
,
x
i
]
f
Δ
x
i
⏟
Lower Riemann sum
→
L
−
L
=
0
Why is it not formal proof:
There might be no point
c
i
such that
f
(
c
i
)
=
sup
[
x
i
−
1
,
x
i
]
f
⟹
These sums might not be Riemann sums at all
⟸
Let
∀
{
P
n
}
:
λ
(
P
n
)
→
n
→
∞
0
:
∑
i
=
1
n
ω
i
Δ
x
i
→
0
∑
i
=
1
n
ω
i
Δ
x
i
=
∑
i
=
1
n
(
sup
[
x
i
−
1
,
x
i
]
f
−
inf
[
x
i
−
1
,
x
i
]
f
)
Δ
x
i
=
∑
i
=
1
n
sup
[
x
i
−
1
,
x
i
]
f
Δ
x
i
−
∑
i
=
1
n
inf
[
x
i
−
1
,
x
i
]
f
Δ
x
i
∑
i
=
1
n
ω
i
Δ
x
i
→
0
⟹
{
∑
i
=
1
n
sup
[
x
i
−
1
,
x
i
]
f
Δ
x
i
→
L
∑
i
=
1
n
inf
[
x
i
−
1
,
x
i
]
f
Δ
x
i
→
L
c
i
∈
[
x
i
−
1
,
x
i
]
⟹
inf
[
x
i
−
1
,
x
i
]
f
≤
f
(
c
i
)
≤
sup
[
x
i
−
1
,
x
i
]
f
⟹
∑
i
=
1
n
inf
[
x
i
−
1
,
x
i
]
f
Δ
x
i
⏟
→
L
≤
S
R
(
f
,
P
,
C
)
≤
∑
i
=
1
n
sup
[
x
i
−
1
,
x
i
]
f
Δ
x
i
⏟
→
L
⟹
S
R
(
f
,
P
,
C
)
→
L
⟹
f
is Riemann-integrable
Why is it not formal proof:
x
n
−
y
n
→
0
⟹
⧸
⟹
{
x
n
→
L
y
n
→
L
x
n
and
y
n
might not have a limit at all