Infi-2 5

Linearity of definite integral #lemma

ab(αf+g)(x)dx=αabf(x)dx+abg(x)dxProof:(αf+g)(ci)Δxi=αf(ci)Δxi+g(ci)Δxi

Monotonicity of definite integral #lemma

f(x)g(x)abf(x)dxabg(x)dx0f(x)0abf(x)dxmf(x)Mm(ba)abf(x)dxM(ba)

Summation of definite integrals #lemma

abf(x)dx+bcf(x)dx=acf(x)dx

Absolute value of definite integral #lemma

|abf(x)dx|ab|f(x)|dx02πsin(x)dx=002π|sin(x)|dx=4

Continuous function is Riemann-integrable #theorem

Let f be a continuous function on [a,b]Then f is Riemann-integrableProof:Let {an},{bn}[a,b]:anbn0f is continuousf(an)f(bn)0Let {Pn}:λ(Pn)0Let ωk be a maximal oscilate in PnωiΔxiωkΔxi=ωkΔxi=ωk(ba)0ωiΔxiωk(ba)ωk=sup[xk1,xk]finf[xk1,xk]fBy Weierstrass theorem: {sup[xk1,xk]f=max[xk1,xk]finf[xk1,xk]f=min[xk1,xk]fmk,Mk[xk1,xk]:ωk=sup[xk1,xk]finf[xk1,xk]f=f(Mk)f(mk)λ(Pn)00xkxk1λ(Pn)xkxk100|Mkmk|xkxk1|Mkmk|0Mkmk0f(Mk)f(mk)0ωk0ωk(ba)0ωiΔxi0By Lebesgue criterion: f is Riemann-integrable

Bounded function with a finite number of discontinuities is Riemann-integrable #theorem

f is Riemann-integrable f is bounded and has a finite number of discontinuitiesExplanation (not proof): Let f be boundedLet there be one discontinuity CLet {Pn}:λ(Pn)0Let C[xk1,xk]ωiΔxi=i<kωiΔxi+ωkΔxk+i>kωiΔxif is boundedωk is finiteΔxk0ωkΔxk0i<kωiΔxi0 (see previous theorem)i>kωiΔxi0 (see previous theorem)ωiΔxi0If number of discontinuities is finite, there is a finite number of such ωkjΔxkjthat all tend to 0Their sum also tends to 0f is Riemann-integrable Let f be Riemann-integrableLet {Pn}:λ(Pn)0ωiΔxi0Let D={k}[1,n] be a set of intervals with discontinuitiesωiΔxi=iDωiΔxi+kDωkΔxkiDωiΔxi0kDωkΔxk0And this is only possible when number of discontinuitites is finite