Infi-2 6

Mean value theorem for definite integrals #theorem

Let f be continuous on [a,b]Then c[a,b]:abf(x)dx=f(c)(ba)

Definite Integral in the point #definition

aaf(x)dx=0

Definite integral on inverse interval #theorem

abf(x)dx=baf(x)dx

Area function #definition

Let f be Riemann-integrable on [a,b]S is called an area function of f and defined asS(x)=axf(t)dtLet f(x)=x on [0,1]S(x)=x22S(x)=f(x)

Continuity of area function #theorem

Let f be a Riemann-integrable function on [a,b]Let S be an area function of fThen S is continuousProof:Let c[a,b]Let xc0|S(x)S(c)|=|axf(t)dtacf(t)dt|axf(t)dt=acf(t)d(t)+cxf(t)dt|axf(t)dtacf(t)dt|=|cxf(t)dt|cx|f(t)|dtf is Riemann-integrable|f| is Riemann-integrable|f| is boundedM:|f|Mcx|f(t)|dtcxMdt=M(xc)xcxc00|S(x)S(c)|M(xc)0S(x)S(c)0limxcS(x)=S(c)S is continuous on [a,b]

Fundamental theorem of Calculus (Part 1) #theorem

Let f be continuous on [a,b]Then S(x)=axf(t)dt is differentiable and S(x)=f(x)Proof:Let c[a,b]S(c)=limh0S(c+h)S(c)h=limh0(ac+hf(t)dtacf(t)dt)h==limh0cc+hf(t)dthf is continuous d[c,c+h]:cc+hf(t)dt=f(d)(c+hc)=f(d)hlimh0cc+hf(t)dth=limh0f(d)hh=limh0f(d)cdc+hc+0=cdcf is continuous f(d)f(c)S(c)=limh0f(d)=f(c)

Fundamental theorem of Calculus (Part 2) aka Newton-Leibniz theorem #theorem

Let f be Riemann-integrable on [a,b]Let F be continuous and a primitive of fThen abf(x)dx=F(b)F(a)Proof:Let f be continuousFS=ff=0C:x[a,b]:F(x)=S(x)+Cabf(t)dt=abf(t)dt0=abf(t)dtaaf(t)dt==S(b)S(a)=F(b)+CF(a)C=F(b)F(a)Let f be non-continuousF is continuous on [a,b] and differentiable on (a,b)c(a,b):F(c)(ba)=F(b)F(a)Let a=x0<x1<<xn=bF(b)F(a)=F(xn)F(x0)==F(xn)+(F(xn1)+F(xn1))++(F(x1)+F(x1))F(x0)==(F(xn)F(xn1))+(F(xn1)F(xn2))++(F(x2)F(x1))+(F(x1)F(x0))F(b)F(a)=i=1n(F(xi)F(xi1))i[1,n]:ci[xi1,xi]:F(xi)F(xi1)=F(ci)(xixi1)i=1n(F(xi)F(xi1))=i=1nf(ci)Δxi=S(f,P,C)Where P={x0,x1,,xn}C={c1,c2,,cn}limλ(P)0F(b)F(a)=limλ(P)0S(f,P,C)F(b)F(a)=abf(x)dx
The following notation can be used: F(b)F(a)=F(x)|x=ax=b
Let f(x)={10x101<x2 on [0,2]f is Riemann-integrable by Lebesgue criterion, it is bounded and has one discontinuityBut, by Darboux theorem, there is no primitive of f because it has a jump discontinuityEven more that that, if f has a primitive, it does not imply that f is Riemann-integrableF(x)={x2sin(1x3)x00x=0F(0)=limh0F(h)F(0)h=limh0F(h)h=limh0hsin(1h3)=0x0F(x)=2xsin(1x3)+(3x2)cos(1x3)F(x)=f(x)={2xsin(1x3)3x2cos(1x3)x00x=0f is not bounded because of 3x2, when x0f is not Riemann-integrable, but it does have a primitiveF(x)
limx00xsin(t2)dtx3=???