Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Infi-2 7
Continuity of area function
#lemma
Let
f
be Riemann-integrable on
[
a
,
b
]
Then
S
(
x
)
=
∫
a
x
f
(
t
)
d
t
is continuous on
[
a
,
b
]
Corollary
lim
x
→
c
S
(
x
)
=
S
(
c
)
lim
x
→
0
∫
0
x
sin
(
t
2
)
d
t
9
x
3
=
L
lim
x
→
0
sin
(
x
2
)
27
x
2
=
1
27
How do we differentiate definite integrals with various borders?
∫
g
(
x
)
h
(
x
)
f
(
t
)
d
t
=
∫
0
h
(
x
)
f
(
t
)
d
t
−
∫
0
g
(
x
)
f
(
t
)
d
t
=
S
(
h
(
x
)
)
−
S
(
g
(
x
)
)
⟹
(
∫
g
(
x
)
h
(
x
)
f
(
t
)
d
t
)
′
=
(
S
(
h
(
x
)
)
−
S
(
g
(
x
)
)
)
′
=
h
′
(
x
)
f
(
h
(
x
)
)
−
g
′
(
x
)
f
(
g
(
x
)
)
(
∫
x
x
2
sin
(
t
2
)
d
t
)
′
=
(
∫
0
x
2
sin
(
t
2
)
d
t
−
∫
0
x
sin
(
t
2
)
d
t
)
′
=
sin
(
x
4
)
⋅
2
x
−
sin
x
⋅
1
2
x
Applications of definite integrals
Let
F
be a primitive of
f
∫
a
b
f
(
x
)
d
x
=
F
(
b
)
−
F
(
a
)
1.
Calculating area
area between graphs of functions
f
,
g
on
[
a
,
b
]
is equal to
∫
a
b
|
f
(
x
)
−
g
(
x
)
|
d
x
2.
Calculating volume of a revolution (Pappus theorem)
volume of a revolution is equal to
{
V
X
(
f
)
=
π
∫
a
b
f
2
(
x
)
d
x
when rotating around axis
X
V
Y
(
f
)
=
2
π
∫
a
b
x
f
(
x
)
d
x
when rotating around axis
Y
3.
Arc length
length of the arc of continuously differentiable function on
[
a
,
b
]
is equal to
L
(
f
)
=
∫
a
b
1
+
(
f
′
(
x
)
)
2
d
x
4.
Revolution surface area
Revolution surface area of continuously differentiable function on
[
a
,
b
]
is equal to
A
(
f
)
=
2
π
∫
a
b
f
(
x
)
1
+
(
f
′
(
x
)
)
2
d
x
Proof for 3.
Let
P
=
{
x
0
,
…
,
x
n
}
L
(
f
)
≈
∑
i
=
1
n
(
x
i
−
x
i
−
1
)
2
+
(
f
(
x
i
)
−
f
(
x
i
−
1
)
)
2
Let
Δ
x
i
=
x
i
−
x
i
−
1
Let
Δ
f
(
x
i
)
=
f
(
x
i
)
−
f
(
x
i
−
1
)
⟹
L
(
f
)
≈
∑
i
=
1
n
Δ
x
i
1
+
(
Δ
f
(
x
i
)
Δ
x
i
)
2
By the Mean value theorem:
∃
c
i
∈
[
x
i
−
1
,
x
i
]
:
f
′
(
c
i
)
=
Δ
f
(
x
i
)
Δ
x
i
Let
C
=
{
c
1
,
…
,
c
n
}
⟹
∑
i
=
1
n
1
+
f
′
(
c
i
)
2
Δ
x
i
=
S
(
f
,
P
,
C
)
⟹
L
(
f
)
=
lim
λ
(
P
)
→
0
S
(
f
,
P
,
C
)
=
∫
a
b
1
+
(
f
′
(
x
)
)
2
d
x
sinh
x
=
e
x
−
e
−
x
2
cosh
x
=
e
x
+
e
−
x
2
Let us calculate the arc length of hyperbolic cosine on
[
0
,
1
]
(
cosh
x
)
′
=
e
x
−
e
−
x
2
=
sinh
x
L
(
cosh
)
=
∫
0
1
1
+
(
e
x
−
e
−
x
2
)
2
d
x
1
+
(
e
x
−
e
−
x
2
)
2
=
4
+
e
2
x
−
2
+
e
−
2
x
4
=
e
2
x
+
2
+
e
−
2
x
2
=
e
x
+
e
−
x
2
=
cosh
x
⟹
L
(
cosh
)
=
∫
0
1
cosh
x
d
x
=
∫
0
1
e
x
+
e
−
x
2
d
x
=
(
e
x
−
e
−
x
2
)
x
=
0
x
=
1
=
e
−
e
−
1
2