Infi-2 7

Continuity of area function #lemma

Let f be Riemann-integrable on [a,b]Then S(x)=axf(t)dt is continuous on [a,b]

Corollary

limxcS(x)=S(c)
limx00xsin(t2)dt9x3=Llimx0sin(x2)27x2=127

How do we differentiate definite integrals with various borders?

g(x)h(x)f(t)dt=0h(x)f(t)dt0g(x)f(t)dt=S(h(x))S(g(x))(g(x)h(x)f(t)dt)=(S(h(x))S(g(x)))=h(x)f(h(x))g(x)f(g(x))
(xx2sin(t2)dt)=(0x2sin(t2)dt0xsin(t2)dt)=sin(x4)2xsinx12x

Applications of definite integrals

Let F be a primitive of fabf(x)dx=F(b)F(a)1.Calculating areaarea between graphs of functions f,g on [a,b]is equal to ab|f(x)g(x)|dx2.Calculating volume of a revolution (Pappus theorem)volume of a revolution is equal to{VX(f)=πabf2(x)dx when rotating around axis XVY(f)=2πabxf(x)dx when rotating around axis Y3.Arc lengthlength of the arc of continuously differentiable function on [a,b]is equal to L(f)=ab1+(f(x))2dx4.Revolution surface areaRevolution surface area of continuously differentiable function on [a,b]is equal to A(f)=2πabf(x)1+(f(x))2dxProof for 3.Let P={x0,,xn}L(f)i=1n(xixi1)2+(f(xi)f(xi1))2Let Δxi=xixi1Let Δf(xi)=f(xi)f(xi1)L(f)i=1nΔxi1+(Δf(xi)Δxi)2By the Mean value theorem: ci[xi1,xi]:f(ci)=Δf(xi)ΔxiLet C={c1,,cn}i=1n1+f(ci)2Δxi=S(f,P,C)L(f)=limλ(P)0S(f,P,C)=ab1+(f(x))2dx
sinhx=exex2coshx=ex+ex2Let us calculate the arc length of hyperbolic cosine on [0,1](coshx)=exex2=sinhxL(cosh)=011+(exex2)2dx1+(exex2)2=4+e2x2+e2x4=e2x+2+e2x2=ex+ex2=coshxL(cosh)=01coshxdx=01ex+ex2dx=(exex2)x=0x=1=ee12