Infi-2 8

Improper integrals

af(x)dx=???bf(x)dx=???f(x)dx=???

Improper integral of the first type #definition

Function f is called Riemann-integrable on [a,) iffb>a:f is Riemann-integrable on [a,b]If function f is Riemann-integrable on [a,)It’s integral is called improper and is equal toaf(x)dx=limbabf(x)dxSimilarly, af(x)dx=limbbaf(x)dx=LIf LR, improper integral is said to converge
21xlnxdx=limb2b1xlnxdxLet t=lnxdt=dxx1xlnxdx=1tdt=ln|t|=ln|lnx|+Climb2b1xlnxdx=limbln|lnb|ln|ln2|=limbln(lnb)=This integral divergesn=21nln(n) also diverges, is there a connection?
0xexdxf(x)=x,g(x)=exf(x)=1,g(x)=exxexdx=xex+exdx=xexex+C0xexdx=limb0bxexdx=limb(bebeb+e0)=limbbeb+1==0+1=1This integral converges to 1Note: nN0:0xnexdx=n!Proof:Let Γ(n)=xnexdxΓ(n+1)=xn+1exdx=xn+1ex+(n+1)xnexdx==xn+1ex+(n+1)Γ(n)Γ(0)=exΓ(n)=i=0nn!(ni)!xni(ex)0xnexdx=limbΓ(n)|x=0x=b==limbi=0n(n)!(ni)!bni(eb)0n!(e0)=n!

Improper integral from -inf to +inf #definition

f(x)dx=af(x)dx+af(x)dxf(x)dx convergesBoth af(x)dx,af(x)dx converge
Note: f(x)dxlimbbbf(x)dxExample:x7dx=ax7dx+limbabx7dx=ax7dx+limb(b88a88)=limbbbx7dx=limb(b88(b)88)=0

Convergence tests

p-Integral test for improper integrals of the first type #lemma

a1xpdx convergesp>1Proof:a1xpdx=limbab1xpdxLet p=1ab1xpdx=ln|b|ln|a|a1xpdx=limb(ln|b|ln|a|)=Let p1ab1xpdx=abxpdx=b1p1pa1p1plimbab1xpdx=limb11p(b1pa1p)p<1b1pa1xpdx divergesp>1b1p0a1xpdx converges

Comparison test for improper integrals of the first type #lemma

Let f,g be Riemann-integrable on [a,)Let 0fgThen ag(x)dx convergesaf(x)dx converges

Limit comparison text for improper integrals of the first type #lemma

Let f,g be Riemann-integrable on [a,)Let 0f,gL=limxf(x)g(x)L=[af(x)dx convergesag(x)dx converges]L=0[af(x)dx convergesag(x)dx converges]0<L<[af(x)dx convergesag(x)dx converges]