Infi-2 9

Improper integral of the second type

What if interval is fine, but the function is not bounded on it?For example, 011xdx

Integrability on non-closed interval #definition

Function f is called Riemann-integrable on (a,b]If c(a,b]:f is Riemann-integrable on [c,b]abf(x)dx=limca+cbf(x)dxFunction f is called Riemann-integrable on [a,b)If c[a,b):f is Riemann-integrable on [a,c]abf(x)dx=limcbacf(x)dx
01/21xlnxdx=limc0+c1/21xlnxdx==limc0+ln|lnx||c1/2=ln|ln(12)|ln|lnc|=Integral diverges
If integral has multiple "problems", or they are in the middle of the interval,integral is to be calculated as a sum of integralsIntegral then converges iff each additive converges
Complex integrals might need a lot of sub-intervals:1(x6)(x23)dx==0+06+68+823+2324+24

Comparison tests

p-Integral test for improper integrals of the first type #lemma

ab1(xa)pdx convergesp<1

Comparison test for improper integrals of the second type #lemma

Let f,g be Riemann-integrable on (a,b]Let 0fgThen abg(x)dx convergesabf(x)dx converges

Limit comparison text for improper integrals of the second type #lemma

Let f,g be Riemann-integrable on (a,b]Let 0f,gL=limxa+f(x)g(x)L=[abf(x)dx convergesabg(x)dx converges]L=0[abf(x)dx convergesabg(x)dx converges]0<L<[abf(x)dx convergesabg(x)dx converges]