Exam 2023 (B)

1

Dimension theorem:Let V be a finitey generated vector space over FLet U,WV be vector subspaces of Vdim(U+W)=dim(U)+dim(W)dim(UW)Proof:Let B={v1,v2,,vn} be a basis of UWLet BU=B{u1,u2,,uk} be a basis of ULet BW=B{w1,w2,,wt} be a basis of WLet B^=BUBWU+W=sp(BUBW)=sp(B^)Let i=1nαivi+i=1kβiui+i=1tγiwi=0i=1nαivi+i=1kβiui=i=1tγiwii=1tγiwisp(BU)=Ui=1tγiwisp(BW)=Wi=1tγiwiUWi=1tγiwi=i=1nδivii=1nδivi+i=1tγiwisp(BW)=0δ1=δ2==δn=γ1=γ2==γt=0i=1nαivi+i=1kβiuisp(BU)=0α1=α2==αn=β1=β2==βk=0B^ is a linear independence and a basis of U+Wdim(U+W)=|B^|=|BUBW|=|BU|+|BW||BUBW|Bdim(U+W)=dim(U)+dim(W)dim(UW)

2a

(aa2a),(0a+1a+1),(112),(aaa2+2a+1)Find all values of a such that v4sp({v1,v2,v3})(a01aaa+11a2aa+12a2+2a+1)(a01a0a+1000a+10a2+1)(a01a0a+100000a2+1)a2+1>0There are no solutionsaR:v4sp({v1,v2,v3})For all values of a find dimension of sp({v1,v2,v3,v4})v4sp({v1,v2,v3})Is {v1,v2,v3} linear independence?(a01aa+112aa+12)(a010a+10000)Let a=0(001010000)sp({v1,v2,v3})=sp({v2,v3})dim(sp({v1,v2,v3,v4}))=3Let a=1(101000000)sp({v1,v2,v3})=sp({v1})dim(sp({v1,v2,v3,v4}))=2Let a0,a1{a0a+10(a010a+10000)sp({v1,v2,v3})=sp({v1,v2})dim(sp({v1,v2,v3,v4}))=3

2b

Let AFn×nLet B0Fn×n symmetric such that AB=BA=0Prove: dim(N(A)N(AT))0Proof:AB=0C(B)N(A)BA=0(BA)T=ATBT=ATB=0C(B)N(AT)C(B)N(A)N(AT)B0 is symmetrici[1,n]:Ci(B)0C(B){0}{0}C(B)N(A)N(AT)N(A)N(AT){0}Alternative proof:B0v0Fn:Bv0AB0v=0BvN(A)BA=0(BA)T=ATBT=ATB=0ATB0v=0BvN(AT)BvN(A)N(AT)N(A)N(AT){0}

3a

B={1,x+x2,x3,x+x2} basis of R3[x]C={(1000),(0100),(0010),(1001)} basis of R2×2T:R3[x]R2×2[T]CB=(0000000200020000)Find T[T(1)]C=0T(1)=0[T(x+x2)]C=0T(x+x2)=0[T(x3)]C=0T(x3)=0[T(x+x2)]C=(0220)T(x+x2)=(0220)T(x+x2)+T(x+x2)=T(2x2)=2T(x2)=(0220)T(x2)=(0110)T(x+x2)T(x+x2)=T(2x)=2T(x)=(0220)T(x)=(0110)T(a+bx+cx2+dx3)=0+bT(x)+cT(x2)+0=(0bccb0)

3b

Let V be a finitely generated vector space, dim(V)=nLet T:VV,T0Prove: B={v1,v2,,vn} basis of B:i[1,n]:T(vi)0Proof:T0v1V:T(v1)0Let B={v1,v2,,vn} be a basis of VLet B^={u1,u2,,un}:i[1,n]:ui={viT(vi)0vi+v1T(vi)=0i[1,n]:T(vi)=0T(ui)=T(vi+v1)=T(vi)+T(v1)=T(v1)0Let k[1,n1]:i[1,k]:T(vi)0 (WLOG)Let i=1nαiui=0i=1nαiui=i=1kαiv1+i=1nαivi=(2α1+i=2kαi)v1+i=2nαivisp(B)=0α2=α3==αn=0α1=0B^ is a linear independence and a basis of VuB^:T(u)0

4a

Let A,BRn×nProve or disprove: N(A)C(B)={0}N(B)=N(AB)Proof:vRn:BvC(B)N(A)C(B)={0}v0Rn:ABv0N(AB)={0}Bv=0ABv=0N(B)N(AB)N(B)={0}N(B)=N(AB)

4b

Let ACn×nProve or disprove: AAT=0A=0Disproof:A=(1+i1+i00)0AAT=(1+i1+i00)(1+i01+i0)=(0000)=0

4c

Let ARn×nProve or disprove: AAT=0A=0Proof:AAT=0i[1,n]:(AAT)ii=0i[1,n]:(AAT)ii=k=1nAikAkiT=k=1nAik2=0i[1,n]:k[1,n]:Aik=0A=0

5a

Let T:R3R3,T(xyz)=(y+zz0)Prove: T is nilpotentProof:T((xyz))=0T2(xyz)=T(y+zz0)=(z00)T3(xyz)=T(T2(xyz))=T(z00)=(000)T3=0

5b

Let V be a vector space over F,dim(V)=nLet T:VV be a nilpotent linear transformationLet α0FLet S=TαIProve: S is invertibleProof:Let vker(S)S(v)=0(TαI)(v)=0T(v)=αvLet kN{0}:Tk=0Tk(v)=αkv=0α0αk0v=0ker(S)={0}S is surjectiveS=(TαI):VVS is injectiveS is bijectiveS is invertible

5c

T:R3R3T20,T3=0T20v3V:T2(v3)0T2(v3)0T(v3)0v30Let v1=T2(v3)0Let v2=T(v3)0Let αv1+βv2+γv3=0T(αv1+βv2+γv3)=αT(v1)+βT(v2)+γT(v3)=0αT3(v3)+βT2(v3)+γT(v3)=0βT2(v3)+γT(v3)=0T(βT2(v3)+γT(v3))=0βT3(v3)+γT2(v3)=0γT2(v3)=0γ=0βT2(v3)=0β=0αv1=0α=0B={v1,v2,v3} is a linear independenceB is a basis of R3[T]BB=([T(v1)]B||[T(v2)]B||[T(v3)]B||)=([T3(v3)]B||[T2(v3)]B||[T(v3)]B||)==([0]B||[v1]B||[v2]B||)=(010001000)