Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Exam 2023 (B)
1
Dimension theorem:
Let
V
be a finitey generated vector space over
F
Let
U
,
W
⊆
V
be vector subspaces of
V
d
i
m
(
U
+
W
)
=
d
i
m
(
U
)
+
d
i
m
(
W
)
−
d
i
m
(
U
∩
W
)
Proof:
Let
B
=
{
v
1
,
v
2
,
…
,
v
n
}
be a basis of
U
∩
W
Let
B
U
=
B
∪
{
u
1
,
u
2
,
…
,
u
k
}
be a basis of
U
Let
B
W
=
B
∪
{
w
1
,
w
2
,
…
,
w
t
}
be a basis of
W
Let
B
^
=
B
U
∪
B
W
U
+
W
=
s
p
(
B
U
∪
B
W
)
=
s
p
(
B
^
)
Let
∑
i
=
1
n
α
i
v
i
+
∑
i
=
1
k
β
i
u
i
+
∑
i
=
1
t
γ
i
w
i
=
0
⟹
∑
i
=
1
n
α
i
v
i
+
∑
i
=
1
k
β
i
u
i
=
−
∑
i
=
1
t
γ
i
w
i
⟹
−
∑
i
=
1
t
γ
i
w
i
∈
s
p
(
B
U
)
=
U
−
∑
i
=
1
t
γ
i
w
i
∈
s
p
(
B
W
)
=
W
⟹
−
∑
i
=
1
t
γ
i
w
i
∈
U
∩
W
⟹
−
∑
i
=
1
t
γ
i
w
i
=
∑
i
=
1
n
δ
i
v
i
⟹
∑
i
=
1
n
δ
i
v
i
+
∑
i
=
1
t
γ
i
w
i
⏟
∈
s
p
(
B
W
)
=
0
⟹
δ
1
=
δ
2
=
⋯
=
δ
n
=
γ
1
=
γ
2
=
⋯
=
γ
t
=
0
⟹
∑
i
=
1
n
α
i
v
i
+
∑
i
=
1
k
β
i
u
i
⏟
∈
s
p
(
B
U
)
=
0
⟹
α
1
=
α
2
=
⋯
=
α
n
=
β
1
=
β
2
=
⋯
=
β
k
=
0
⟹
B
^
is a linear independence and a basis of
U
+
W
⟹
d
i
m
(
U
+
W
)
=
|
B
^
|
=
|
B
U
∪
B
W
|
=
|
B
U
|
+
|
B
W
|
−
|
B
U
∩
B
W
|
⏟
B
⟹
d
i
m
(
U
+
W
)
=
d
i
m
(
U
)
+
d
i
m
(
W
)
−
d
i
m
(
U
∩
W
)
2a
(
a
a
2
a
)
,
(
0
a
+
1
a
+
1
)
,
(
1
1
2
)
,
(
a
a
a
2
+
2
a
+
1
)
Find all values of
a
such that
v
4
∈
s
p
(
{
v
1
,
v
2
,
v
3
}
)
(
a
0
1
a
a
a
+
1
1
a
2
a
a
+
1
2
a
2
+
2
a
+
1
)
→
(
a
0
1
a
0
a
+
1
0
0
0
a
+
1
0
a
2
+
1
)
→
(
a
0
1
a
0
a
+
1
0
0
0
0
0
a
2
+
1
)
a
2
+
1
>
0
⟹
There are no solutions
⟹
∀
a
∈
R
:
v
4
∉
s
p
(
{
v
1
,
v
2
,
v
3
}
)
For all values of
a
find dimension of
s
p
(
{
v
1
,
v
2
,
v
3
,
v
4
}
)
v
4
∉
s
p
(
{
v
1
,
v
2
,
v
3
}
)
Is
{
v
1
,
v
2
,
v
3
}
linear independence?
(
a
0
1
a
a
+
1
1
2
a
a
+
1
2
)
→
⋯
→
(
a
0
1
0
a
+
1
0
0
0
0
)
Let
a
=
0
(
0
0
1
0
1
0
0
0
0
)
⟹
s
p
(
{
v
1
,
v
2
,
v
3
}
)
=
s
p
(
{
v
2
,
v
3
}
)
⟹
d
i
m
(
s
p
(
{
v
1
,
v
2
,
v
3
,
v
4
}
)
)
=
3
Let
a
=
−
1
(
−
1
0
1
0
0
0
0
0
0
)
⟹
s
p
(
{
v
1
,
v
2
,
v
3
}
)
=
s
p
(
{
v
1
}
)
⟹
d
i
m
(
s
p
(
{
v
1
,
v
2
,
v
3
,
v
4
}
)
)
=
2
Let
a
≠
0
,
a
≠
−
1
{
a
≠
0
a
+
1
≠
0
⟹
(
a
0
1
0
a
+
1
0
0
0
0
)
⟹
s
p
(
{
v
1
,
v
2
,
v
3
}
)
=
s
p
(
{
v
1
,
v
2
}
)
⟹
d
i
m
(
s
p
(
{
v
1
,
v
2
,
v
3
,
v
4
}
)
)
=
3
2b
Let
A
∈
F
n
×
n
Let
B
≠
0
∈
F
n
×
n
symmetric such that
A
B
=
B
A
=
0
Prove:
d
i
m
(
N
(
A
)
∩
N
(
A
T
)
)
≠
0
Proof:
A
B
=
0
⟹
C
(
B
)
⊆
N
(
A
)
B
A
=
0
⟹
(
B
A
)
T
=
A
T
B
T
=
A
T
B
=
0
⟹
C
(
B
)
⊆
N
(
A
T
)
⟹
C
(
B
)
⊆
N
(
A
)
∩
N
(
A
T
)
B
≠
0
is symmetric
⟹
∃
i
∈
[
1
,
n
]
:
C
i
(
B
)
≠
0
⟹
C
(
B
)
≠
{
0
}
{
0
}
⊂
C
(
B
)
⊆
N
(
A
)
∩
N
(
A
T
)
⟹
N
(
A
)
∩
N
(
A
T
)
≠
{
0
}
Alternative proof:
B
≠
0
⟹
∃
v
≠
0
∈
F
n
:
B
v
≠
0
A
B
⏟
0
v
=
0
⟹
B
v
∈
N
(
A
)
B
A
=
0
⟹
(
B
A
)
T
=
A
T
B
T
=
A
T
B
=
0
⟹
A
T
B
⏟
0
v
=
0
⟹
B
v
∈
N
(
A
T
)
⟹
B
v
∈
N
(
A
)
∩
N
(
A
T
)
⟹
N
(
A
)
∩
N
(
A
T
)
≠
{
0
}
3a
B
=
{
1
,
x
+
x
2
,
x
3
,
−
x
+
x
2
}
basis of
R
3
[
x
]
C
=
{
(
1
0
0
0
)
,
(
0
1
0
0
)
,
(
0
0
1
0
)
,
(
1
0
0
1
)
}
basis of
R
2
×
2
T
:
R
3
[
x
]
→
R
2
×
2
[
T
]
C
B
=
(
0
0
0
0
0
0
0
−
2
0
0
0
2
0
0
0
0
)
Find
T
[
T
(
1
)
]
C
=
0
⟹
T
(
1
)
=
0
[
T
(
x
+
x
2
)
]
C
=
0
⟹
T
(
x
+
x
2
)
=
0
[
T
(
x
3
)
]
C
=
0
⟹
T
(
x
3
)
=
0
[
T
(
−
x
+
x
2
)
]
C
=
(
0
−
2
2
0
)
⟹
T
(
−
x
+
x
2
)
=
(
0
−
2
2
0
)
T
(
x
+
x
2
)
+
T
(
−
x
+
x
2
)
=
T
(
2
x
2
)
=
2
T
(
x
2
)
=
(
0
−
2
2
0
)
⟹
T
(
x
2
)
=
(
0
−
1
1
0
)
T
(
x
+
x
2
)
−
T
(
−
x
+
x
2
)
=
T
(
2
x
)
=
2
T
(
x
)
=
(
0
2
−
2
0
)
⟹
T
(
x
)
=
(
0
1
−
1
0
)
⟹
T
(
a
+
b
x
+
c
x
2
+
d
x
3
)
=
0
+
b
T
(
x
)
+
c
T
(
x
2
)
+
0
=
(
0
b
−
c
c
−
b
0
)
3b
Let
V
be a finitely generated vector space,
d
i
m
(
V
)
=
n
Let
T
:
V
→
V
,
T
≠
0
Prove:
∃
B
=
{
v
1
,
v
2
,
…
,
v
n
}
basis of
B
:
∀
i
∈
[
1
,
n
]
:
T
(
v
i
)
≠
0
Proof:
T
≠
0
⟹
∃
v
1
∈
V
:
T
(
v
1
)
≠
0
Let
B
=
{
v
1
,
v
2
,
…
,
v
n
}
be a basis of
V
Let
B
^
=
{
u
1
,
u
2
,
…
,
u
n
}
:
∀
i
∈
[
1
,
n
]
:
u
i
=
{
v
i
T
(
v
i
)
≠
0
v
i
+
v
1
T
(
v
i
)
=
0
∀
i
∈
[
1
,
n
]
:
T
(
v
i
)
=
0
⟹
T
(
u
i
)
=
T
(
v
i
+
v
1
)
=
T
(
v
i
)
+
T
(
v
1
)
=
T
(
v
1
)
≠
0
Let
k
∈
[
1
,
n
−
1
]
:
∀
i
∈
[
1
,
k
]
:
T
(
v
i
)
≠
0
(WLOG)
Let
∑
i
=
1
n
α
i
u
i
=
0
∑
i
=
1
n
α
i
u
i
=
∑
i
=
1
k
α
i
v
1
+
∑
i
=
1
n
α
i
v
i
=
(
2
α
1
+
∑
i
=
2
k
α
i
)
v
1
+
∑
i
=
2
n
α
i
v
i
⏟
∈
s
p
(
B
)
=
0
⟹
α
2
=
α
3
=
⋯
=
α
n
=
0
⟹
α
1
=
0
⟹
B
^
is a linear independence and a basis of
V
∀
u
∈
B
^
:
T
(
u
)
≠
0
4a
Let
A
,
B
∈
R
n
×
n
Prove or disprove:
N
(
A
)
∩
C
(
B
)
=
{
0
}
⟹
N
(
B
)
=
N
(
A
B
)
Proof:
∀
v
∈
R
n
:
B
v
∈
C
(
B
)
N
(
A
)
∩
C
(
B
)
=
{
0
}
⟹
∀
v
≠
0
∈
R
n
:
A
B
v
≠
0
⟹
N
(
A
B
)
=
{
0
}
B
v
=
0
⟹
A
B
v
=
0
⟹
N
(
B
)
⊆
N
(
A
B
)
⟹
N
(
B
)
=
{
0
}
⟹
N
(
B
)
=
N
(
A
B
)
4b
Let
A
∈
C
n
×
n
Prove or disprove:
A
A
T
=
0
⟹
A
=
0
Disproof:
A
=
(
1
+
i
−
1
+
i
0
0
)
≠
0
A
A
T
=
(
1
+
i
−
1
+
i
0
0
)
(
1
+
i
0
−
1
+
i
0
)
=
(
0
0
0
0
)
=
0
4c
Let
A
∈
R
n
×
n
Prove or disprove:
A
A
T
=
0
⟹
A
=
0
Proof:
A
A
T
=
0
⟹
∀
i
∈
[
1
,
n
]
:
(
A
A
T
)
i
i
=
0
⟹
∀
i
∈
[
1
,
n
]
:
(
A
A
T
)
i
i
=
∑
k
=
1
n
A
i
k
A
k
i
T
=
∑
k
=
1
n
A
i
k
2
=
0
⟹
∀
i
∈
[
1
,
n
]
:
∀
k
∈
[
1
,
n
]
:
A
i
k
=
0
⟹
A
=
0
5a
Let
T
:
R
3
→
R
3
,
T
(
x
y
z
)
=
(
y
+
z
z
0
)
Prove:
T
is nilpotent
Proof:
T
(
(
x
y
z
)
)
=
0
T
2
(
x
y
z
)
=
T
(
y
+
z
z
0
)
=
(
z
0
0
)
T
3
(
x
y
z
)
=
T
(
T
2
(
x
y
z
)
)
=
T
(
z
0
0
)
=
(
0
0
0
)
⟹
T
3
=
0
5b
Let
V
be a vector space over
F
,
d
i
m
(
V
)
=
n
Let
T
:
V
→
V
be a nilpotent linear transformation
Let
α
≠
0
∈
F
Let
S
=
T
−
α
I
Prove:
S
is invertible
Proof:
Let
v
∈
k
e
r
(
S
)
S
(
v
)
=
0
⟹
(
T
−
α
I
)
(
v
)
=
0
⟹
T
(
v
)
=
α
v
Let
k
∈
N
∪
{
0
}
:
T
k
=
0
T
k
(
v
)
=
α
k
v
=
0
α
≠
0
⟹
α
k
≠
0
⟹
v
=
0
⟹
k
e
r
(
S
)
=
{
0
}
⟹
S
is surjective
S
=
(
T
−
α
I
)
:
V
→
V
⟹
S
is injective
⟹
S
is bijective
⟹
S
is invertible
5c
T
:
R
3
→
R
3
T
2
≠
0
,
T
3
=
0
T
2
≠
0
⟹
∃
v
3
∈
V
:
T
2
(
v
3
)
≠
0
T
2
(
v
3
)
≠
0
⟹
T
(
v
3
)
≠
0
⟹
v
3
≠
0
Let
v
1
=
T
2
(
v
3
)
≠
0
Let
v
2
=
T
(
v
3
)
≠
0
Let
α
v
1
+
β
v
2
+
γ
v
3
=
0
⟹
T
(
α
v
1
+
β
v
2
+
γ
v
3
)
=
α
T
(
v
1
)
+
β
T
(
v
2
)
+
γ
T
(
v
3
)
=
0
⟹
α
T
3
(
v
3
)
+
β
T
2
(
v
3
)
+
γ
T
(
v
3
)
=
0
⟹
β
T
2
(
v
3
)
+
γ
T
(
v
3
)
=
0
⟹
T
(
β
T
2
(
v
3
)
+
γ
T
(
v
3
)
)
=
0
⟹
β
T
3
(
v
3
)
+
γ
T
2
(
v
3
)
=
0
⟹
γ
T
2
(
v
3
)
=
0
⟹
γ
=
0
⟹
β
T
2
(
v
3
)
=
0
⟹
β
=
0
⟹
α
v
1
=
0
⟹
α
=
0
⟹
B
=
{
v
1
,
v
2
,
v
3
}
is a linear independence
⟹
B
is a basis of
R
3
[
T
]
B
B
=
(
[
T
(
v
1
)
]
B
|
|
[
T
(
v
2
)
]
B
|
|
[
T
(
v
3
)
]
B
|
|
)
=
(
[
T
3
(
v
3
)
]
B
|
|
[
T
2
(
v
3
)
]
B
|
|
[
T
(
v
3
)
]
B
|
|
)
=
=
(
[
0
]
B
|
|
[
v
1
]
B
|
|
[
v
2
]
B
|
|
)
=
(
0
1
0
0
0
1
0
0
0
)