Exam 2023 (C)

1

Let L={x|Ax=b,b0}Let H={x|Ax=0}Let v0LProve: H+v0=LProof:Let vH+v0hH:v=h+v0Av=A(h+v0)=Ah+Av0=0+b=bvLH+v0LLet vLA(vv0)=AvAv0=bb=0(vv0)H(vv0)+v0H+v0vH+v0LH+v0H+v0=L

2a

U={p(x)R2[x]|p(1)=0p(1)=0}W=sp({1+x+x2,x+x2})Find basis and dimension of U+W,UWSolution:Let p(x)R2[x]p(x)=a+bx+cx2p(x)=b+2cxp(1)=b+2cp(1)=a+b+c{b+2c=0a+b+c=0{b=2ca=cU=sp({12x+x2})U+W=sp(UW)=sp({1+x+x2,x+x2,12x+x2})(101011201110)(101001300100)(101001300030){1+x+x2,x+x2,12x+x2} is a linear independence and is a basis of U+Wdim(U+W)=3dim(U+W)3=dim(U)1+dim(W)2dim(UW)dim(UW)=0{0} is a basis of UW

2b

Let A,BFn×nProve: dim(N(AB))dim(N(A))+dim(N(B))Proof:Let vN(B)Bv=0ABv=0vN(B)N(B)N(AB)Let Bk={v1,v2,,vk} be a basis of N(B),dim(N(B))=kLet Bk+t={v1,v2,,vk,u1,u2,,ut} be a basis of N(AB),dim(N(AB))=k+ti[1,t]:ABui=0BuiN(A){Bu1,Bu2,,But}N(A)Let i=1tαiBui=0i=1tBαiui=Bi=1tαiui=0i=1tαiuiN(B)i=1tαiui=i=1kβivii=1tαiuii=1kβiviLinear combination of Bk+t=0Bk+t is a linear independenceα1=α2==αt=β1=β2==βk=0{Bu1,Bu2,,But} is a linear independencedim(N(A))tdim(N(B))+dim(N(A))k+t=dim(N(AB))dim(N(AB))dim(N(A))+dim(N(B))

3a

Let B={1,1+x,1+x2} be a basis of R2[x]Let C={(0001),(1000),(0200),(0011)} be a basis of R2×2Let T:R2[x]R2×2 be a linear transformationLet [T]CB=(102013115111)Find basis and dimension of Im(T),ker(T)Solution:(102013115111)(102013013013)(102013000000)[ker(T)]B=N([T]CB)=sp{(231)}{ker(T)=sp{43x+x2}dim(ker(T))=1[Im(T)]C=C([T]CB)=sp{(1011),(0111)}{Im(T)=sp{(0210),(1211)}dim(Im(T))=2

3b

Let V,W be finitely generated vector spacesLet T,S:VW be linear transformations, S is invertibleTS1 is injectiveIs T neccessarily invertible?Solution:TS1:WW is injectivedim(W)=dim(W)TS1 is surjectiveT is surjectiveS is invertibleVWdim(V)=dim(W)T is injectiveT is bijectiveTis invertible

4a

Let A,BFn×nLet rank(A)<n2,rank(B)<n2Prove or disprove: AB=0Disproof:A=B=(100000000)AB=(100000000)0rank(A)=rank(B)=1<32

4b

Let A,BFn×n,AB=0Prove or disprove: rank(A)n2rank(B)n2Proof:AB=0rank(AB)=0dim(N(AB))=nvFn:ABv=0v=0vFn:BvC(B)C(B)N(A)dim(C(B))dim(N(A))rank(B)nrank(A)rank(A)+rank(B)nLet rank(A)=k>n2k+rank(B)nn2+rank(B)nrank(B)n2Let rank(B)=k>n2k+rank(A)nn2+rank(A)nrank(A)n2

4c

Let AR3×3 be anti-symmetricProve: A(111)=(abc)a+b+c=0Proof:(0a2a3a20a5a3a50)(111)=(a2+a3a5a2a3a5){a2+a3=aa5a2=ba3a5=ca+b+c=a2+a3+a5a2a3a5=0Note: this doesn’t work in Z2Because (100010001)Z23×3 is anti-symmetric

5

Let V,W be finitely generated vector spaces over FLet T:VW be a linear transformationLet S:WV be a linear transformation,TST=T

5a

Show that not neccesserily ker(S)={0}Solution:Let T=S=0TST=T=0ker(S)=W{0}

5b

Prove: ker(S)Im(T)={0}Proof:Let wker(S)Im(T)S(w)=0,vV:T(v)=wS(T(v))=S(w)=0T(S(T(v)))=T(0)=0=T(v)=wker(S)Im(T)={0}

5c

Prove: T:VW:S:WV:TST=TProof:Let BT={w1,w2,,wk} be a basis of Im(T)i[1,k]:viV:T(vi)=wiIm(T)WB=BT{wk+1,wk+2,,wk+t} basis of WBy the defining theorem S:WV,S(wi)={viik0i>kLet vV{αi}i[1,n]F:v=i=1nαiviLet T(v)=wWwIm(T){βj}j[1,k]F:w=j=1kβjwjTST(v)=TS(w)=TS(i=1kβjwj)=T(i=1kβjS(wj))=T(i=1kβjvj)=j=1kβjT(vj)==i=1kβjwj=w=T(v)TST=T