Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Exam 2024 (A)
1a
State and prove the theorem of three
Theorem:
Let
V
be a vector space
Let
B
⊆
V
1.
s
p
(
B
)
=
V
2.
|
B
|
=
d
i
m
(
V
)
3.
B
is a linear independence
If any two properties are true, then the third one is also true
Proof:
1
and
3
⟹
2
by definition of basis
Let
2
and
3
Let
s
p
(
B
)
≠
V
⟹
∃
v
∈
V
:
v
∉
s
p
(
B
)
⟹
B
∪
{
v
}
is a linear independence
Let
C
be a basis of
V
d
i
m
(
V
)
=
|
C
|
<
|
B
∪
{
v
}
|
But
C
is a maximal linear independence of
V
−
Contradiction!
⟹
s
p
(
B
)
=
V
⟹
2
and
3
⟹
1
Let
1
and
2
Let
C
be a basis of
V
Let
B
be a linear dependence
⟹
∃
v
∈
B
:
s
p
(
B
∖
{
v
}
)
=
s
p
(
B
)
=
V
⟹
d
i
m
(
V
)
=
|
C
|
≤
|
B
∖
{
v
}
|
=
d
i
m
(
V
)
−
1
−
Contradiction!
⟹
B
is a linear independence
⟹
1
and
2
⟹
3
1b
B
=
{
(
1
3
)
,
(
1
2
)
}
α
(
1
3
)
+
β
(
1
2
)
=
(
2
1
)
α
+
β
=
2
3
α
+
2
β
=
1
(
1
1
2
3
2
1
)
→
R
2
−
2
R
1
(
1
1
2
1
0
−
3
)
α
=
−
3
β
=
5
⟹
[
(
2
1
)
]
B
=
(
−
3
5
)
[
v
]
B
=
(
1
1
)
⟹
α
(
1
3
)
+
β
(
1
2
)
=
(
2
5
)
2a
(
2
−
2
2
1
−
1
1
−
1
1
−
1
)
→
(
1
−
1
1
1
−
1
1
1
−
1
1
)
→
(
1
−
1
1
0
0
0
0
0
0
)
3
=
r
a
n
k
(
A
)
+
d
i
m
(
N
(
A
)
)
⟹
3
=
1
+
d
i
m
(
N
(
A
)
)
{
x
−
y
+
z
=
0
0
=
0
0
=
0
⟹
C
(
A
)
=
s
p
{
(
2
1
−
1
)
}
(
1
−
1
1
0
0
0
0
0
0
0
0
0
)
⟹
{
x
=
s
−
t
y
=
s
z
=
t
⟹
(
s
s
0
)
+
(
−
t
0
t
)
⟹
N
(
A
)
=
s
p
{
(
1
1
0
)
,
(
−
1
0
1
)
}
v
∈
C
(
A
)
∩
N
(
A
)
⟹
v
=
α
(
2
1
−
1
)
=
β
(
1
1
0
)
+
γ
(
−
1
0
1
)
⟹
{
2
α
−
β
+
γ
=
0
α
−
β
=
0
α
+
γ
=
0
(
2
−
1
1
0
1
−
1
0
0
1
0
1
0
)
→
(
2
−
1
1
0
0
−
1
−
1
0
0
0
0
0
)
⟹
C
(
A
)
∩
N
(
A
)
=
s
p
{
(
−
1
−
1
1
)
}
⟹
C
(
A
)
∩
N
(
A
)
=
{
0
}
⟹
dim
=
0
,
Basis
∅
C
(
A
)
+
N
(
A
)
=
{
u
+
w
|
u
∈
C
(
A
)
,
w
∈
N
(
A
)
}
α
(
2
1
−
1
)
+
β
(
1
1
0
)
+
γ
(
−
1
0
1
)
U
+
W
=
s
p
{
U
∪
W
}
⟹
C
(
A
)
+
N
(
A
)
=
s
p
{
(
1
0
0
)
,
(
1
1
0
)
,
(
−
1
0
1
)
}
=
R
3
v
does not exist
v
∈
R
3
:
v
∉
C
(
A
)
+
N
(
A
)