Exam 2024 (A)

1a

State and prove the theorem of threeTheorem:Let V be a vector spaceLet BV1.sp(B)=V2.|B|=dim(V)3.B is a linear independenceIf any two properties are true, then the third one is also trueProof:1 and 32 by definition of basisLet 2 and 3Let sp(B)VvV:vsp(B)B{v} is a linear independenceLet C be a basis of Vdim(V)=|C|<|B{v}|But C is a maximal linear independence of VContradiction!sp(B)=V2 and 31Let 1 and 2Let C be a basis of VLet B be a linear dependencevB:sp(B{v})=sp(B)=Vdim(V)=|C||B{v}|=dim(V)1Contradiction!B is a linear independence1 and 23

1b

B={(13),(12)}α(13)+β(12)=(21)α+β=23α+2β=1(112321)R22R1(112103)α=3β=5[(21)]B=(35)[v]B=(11)α(13)+β(12)=(25)

2a

(222111111)(111111111)(111000000)3=rank(A)+dim(N(A))3=1+dim(N(A)){xy+z=00=00=0C(A)=sp{(211)}(111000000000){x=sty=sz=t(ss0)+(t0t)N(A)=sp{(110),(101)}vC(A)N(A)v=α(211)=β(110)+γ(101){2αβ+γ=0αβ=0α+γ=0(211011001010)(211001100000)C(A)N(A)=sp{(111)}C(A)N(A)={0}dim =0,Basis C(A)+N(A)={u+w|uC(A),wN(A)}α(211)+β(110)+γ(101)U+W=sp{UW}C(A)+N(A)=sp{(100),(110),(101)}=R3v does not existvR3:vC(A)+N(A)