Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Exam 2024 (B)
1a
Let
V
,
W
be finitely generated vector spaces over
F
Let
T
:
V
→
W
be a linear transformation
Prove:
T
is invertible
⟺
T
is bijective
Proof:
Let
T
be invertible
⟹
∃
linear transformation
T
−
1
:
W
→
V
,
T
T
−
1
=
I
W
,
T
−
1
T
=
I
V
T
T
−
1
=
I
W
⟹
T
T
−
1
is surjective
⟹
T
is surjective
T
−
1
T
=
I
V
⟹
T
−
1
T
is injective
⟹
T
is injective
⟹
T
is bijective
Let
T
be bijective
T
is a function
⟹
∃
function
S
:
V
→
W
,
T
S
=
I
W
,
S
T
=
I
V
Let
w
1
,
w
2
∈
W
,
α
∈
F
S
(
w
1
+
α
w
2
)
=
S
T
(
S
(
w
1
+
α
w
2
)
)
=
S
(
T
S
(
w
1
+
α
w
2
)
)
=
S
(
T
S
(
w
1
)
+
α
T
S
(
w
2
)
)
=
=
S
(
T
(
S
(
w
1
)
+
α
S
(
w
2
)
)
)
=
S
T
(
S
(
w
1
)
+
α
S
(
w
2
)
)
=
S
(
w
1
)
+
α
S
(
w
2
)
⟹
S
is a linear transformation
⟹
T
is invertible
1b
Let
T
:
R
2
→
R
2
T
(
(
x
y
)
)
=
(
2
x
x
+
y
)
Let
B
=
{
(
1
1
)
,
(
2
1
)
}
basis of
R
2
Find
[
T
]
B
B
Solution:
[
T
]
B
B
=
(
[
T
(
1
1
)
]
B
[
T
(
2
1
)
]
B
)
=
(
[
(
2
2
)
]
B
[
(
4
3
)
]
B
)
=
(
2
2
0
1
)
2
U
=
s
p
{
(
0
0
0
1
)
,
(
1
1
0
1
)
}
W
=
{
(
a
b
c
d
)
|
a
−
d
=
0
a
+
b
+
c
−
2
d
=
0
}
Find basis and dimension of
U
+
W
,
U
∩
W
Solution:
W
=
{
(
a
b
c
d
)
|
a
−
d
=
0
a
+
b
+
c
−
2
d
=
0
}
=
{
(
d
b
c
d
)
|
b
+
c
=
d
}
=
{
(
b
+
c
b
c
b
+
c
)
}
=
=
s
p
{
(
1
1
0
1
)
,
(
1
0
1
1
)
}
⟹
U
+
W
=
s
p
{
U
∪
W
}
=
s
p
{
(
0
0
0
1
)
,
(
1
1
0
1
)
,
(
1
0
1
1
)
}
{
(
0
0
0
1
)
,
(
1
1
0
1
)
,
(
1
0
1
1
)
}
is a linear independence and is a basis of
U
+
W
⟹
d
i
m
(
U
+
W
)
=
3
Let
v
∈
U
∩
W
⟹
α
(
0
0
0
1
)
+
β
(
1
1
0
1
)
=
γ
(
1
1
0
1
)
+
δ
(
1
0
1
1
)
⟹
(
β
−
γ
−
δ
β
−
γ
δ
α
+
β
−
γ
−
δ
)
=
(
0
0
0
0
)
⟹
δ
=
0
⟹
β
=
γ
⟹
α
=
0
⟹
v
=
(
β
β
0
β
)
⟹
U
∩
W
=
s
p
{
(
1
1
0
1
)
}
⟹
{
(
1
1
0
1
)
}
is a basis of
U
∩
W
and
d
i
m
(
U
∩
W
)
=
1
Alternative solution:
s
p
{
(
0
1
1
1
)
}
⊆
U
and
s
p
{
(
0
1
1
1
)
}
⊆
W
⟹
s
p
{
(
0
1
1
1
)
}
⊆
U
∩
W
d
i
m
(
U
+
W
)
⏟
3
=
d
i
m
(
U
)
⏟
2
+
d
i
m
(
W
)
⏟
2
−
d
i
m
(
U
∩
W
)
⟹
d
i
m
(
U
∩
W
)
=
1
⟹
s
p
{
(
0
1
1
1
)
}
=
U
∩
W
3a
Let
T
:
R
3
→
R
3
be a linear transformation
T
(
1
0
−
1
)
=
(
1
2
1
)
,
T
(
1
2
3
)
=
(
1
1
1
)
,
T
(
2
2
2
)
=
(
2
3
2
)
How many linear transformations
T
satisfy these conditions?
Solution:
(
2
2
2
)
=
(
1
0
−
1
)
+
(
1
2
3
)
T
(
2
2
2
)
=
T
(
1
0
−
1
)
+
T
(
1
2
3
)
⟹
Such
T
exists
Let
B
=
{
(
1
0
−
1
)
,
(
1
2
3
)
,
v
3
}
be a basis of
R
3
⟹
By the defining theorem
∀
u
∈
R
3
:
∃
!
T
:
{
T
(
1
0
−
1
)
=
(
1
2
1
)
T
(
1
2
3
)
=
(
1
1
1
)
T
(
v
3
)
=
u
⟹
There exists an infinite number of such linear transformations
3b
Let
V
be a finitely generated vector space
Let
T
,
S
:
V
→
V
be linear transformations
Prove:
d
i
m
(
k
e
r
(
T
S
)
)
≤
d
i
m
(
k
e
r
(
T
)
)
+
d
i
m
(
k
e
r
(
S
)
)
Proof:
Let
R
:
k
e
r
(
T
S
)
→
V
,
R
(
v
)
=
S
(
v
)
v
∈
k
e
r
(
S
T
)
⟹
{
T
(
S
(
v
)
)
=
T
(
0
)
=
0
v
∈
k
e
r
(
S
)
T
(
S
(
v
)
)
=
0
⟹
S
(
v
)
∈
k
e
r
(
T
)
v
∉
k
e
r
(
S
)
⟹
I
m
(
R
)
=
k
e
r
(
T
)
v
∈
k
e
r
(
R
)
⟹
R
(
v
)
=
S
(
v
)
=
0
⟹
v
∈
k
e
r
(
S
)
⟹
k
e
r
(
R
)
=
k
e
r
(
S
T
)
∩
k
e
r
(
S
)
⟹
d
i
m
(
k
e
r
(
S
T
)
)
=
d
i
m
(
k
e
r
(
R
)
)
+
d
i
m
(
I
m
(
R
)
)
=
=
d
i
m
(
k
e
r
(
S
)
∩
k
e
r
(
S
T
)
)
+
d
i
m
(
k
e
r
(
T
)
)
k
e
r
(
S
)
∩
k
e
r
(
T
S
)
⊆
k
e
r
(
S
)
⟹
d
i
m
(
k
e
r
(
S
)
∩
k
e
r
(
T
S
)
)
≤
d
i
m
(
k
e
r
(
S
)
)
⟹
d
i
m
(
k
e
r
(
T
S
)
)
≤
d
i
m
(
k
e
r
(
S
)
)
+
d
i
m
(
k
e
r
(
T
)
)
4
Let
V
be a finitely generated vector space,
d
i
m
(
V
)
≥
2
Let
T
,
S
:
V
→
V
be linear transformations
4a
Prove or disprove:
T
S
is surjective
⟹
T
is an isomorphism
Proof:
Let
T
S
be surjective
T
S
is surjective
⟹
T
is surjective
d
i
m
(
V
)
=
d
i
m
(
V
)
⟹
T
is injective
⟹
T
is bijective
⟹
T
is invertible (an isomorphism)
4b
Prove or disprove:
I
m
(
T
+
S
)
⊆
I
m
(
T
)
⟹
I
m
(
S
)
⊆
I
m
(
T
)
Proof:
Let
I
m
(
T
+
S
)
⊆
I
m
(
T
)
Let
u
∈
I
m
(
S
)
∃
v
∈
V
:
S
(
v
)
=
u
(
T
+
S
)
(
v
)
=
T
(
v
)
+
S
(
v
)
∈
I
m
(
T
)
⟹
∃
w
∈
V
:
T
(
w
)
=
T
(
v
)
+
S
(
v
)
⟹
u
=
S
(
v
)
=
T
(
w
−
v
)
⟹
u
∈
I
m
(
T
)
⟹
I
m
(
S
)
⊆
I
m
(
T
)
4c
Prove or disprove:
k
e
r
(
T
+
S
)
⊆
k
e
r
(
T
)
⟹
k
e
r
(
S
)
⊆
k
e
r
(
T
)
Disproof:
Let
T
=
I
V
Let
S
=
0
V
T
+
S
=
T
⟹
k
e
r
(
T
+
S
)
=
k
e
r
(
T
)
⊆
k
e
r
(
T
)
k
e
r
(
T
)
=
{
0
}
k
e
r
(
S
)
=
V
d
i
m
(
V
)
≥
2
⟹
V
⊈
{
0
}
5
Let
V
be a finitely generated vector space
Let
T
:
V
→
V
be a linear transformation
U
is called
T
-invariant
if
T
[
U
]
⊆
U
In other words
∀
u
∈
U
:
T
(
u
)
∈
U
5a
Let
T
:
V
→
V
be a linear transformation
Let
U
,
W
⊆
V
be
T
-invariant
5a.i
Prove:
U
+
W
is
T
-invariant
Proof:
Let
v
∈
U
+
W
⟹
∃
u
∈
U
,
w
∈
W
:
v
=
u
+
w
⟹
T
(
v
)
=
T
(
u
+
w
)
=
T
(
u
)
⏟
∈
U
+
T
(
w
)
⏟
∈
W
∈
U
+
W
⟹
U
+
W
is
T
-invariant
5a.ii
Prove:
T
[
U
]
+
T
[
W
]
=
V
⟹
U
+
W
=
V
Proof:
U
⊆
V
,
W
⊆
V
⟹
U
+
W
⊆
V
Let
v
∈
V
T
[
U
]
+
T
[
W
]
=
V
⟹
∃
u
∈
U
,
w
∈
W
:
T
(
u
)
+
T
(
w
)
=
v
T
(
u
)
∈
U
,
T
(
w
)
∈
W
⟹
T
(
u
)
+
T
(
w
)
∈
U
+
W
⟹
v
∈
U
+
W
⟹
V
⊆
U
+
W
⟹
U
+
W
=
V
5b
Let
T
,
S
:
V
→
V
be linear transformations
Let
T
S
=
S
T
5b.i
Prove:
I
m
(
S
)
is
T
-invariant
Proof:
Let
u
∈
I
m
(
S
)
⟹
∃
v
∈
V
:
S
(
v
)
=
u
S
(
v
)
=
u
⟹
T
(
S
(
v
)
)
=
T
(
u
)
⟹
S
(
T
(
v
)
)
=
T
(
u
)
⟹
T
(
u
)
∈
I
m
(
S
)
⟹
I
m
(
S
)
is
T
-invariant
5b.ii
Prove:
k
e
r
(
S
)
is
T
-invariant
Proof:
Let
v
∈
k
e
r
(
S
)
⟹
S
(
v
)
=
0
⟹
T
(
S
(
v
)
)
=
T
(
0
)
=
0
⟹
S
(
T
(
v
)
)
=
T
(
S
(
v
)
)
=
0
⟹
T
(
v
)
∈
k
e
r
(
S
)
⟹
k
e
r
(
S
)
is
T
-invariant
5c
Let
T
:
V
→
V
be an isomorphism
Let
U
⊆
V
be
T
-invariant
Prove:
U
is
T
−
1
-invariant
Proof:
Let
B
=
{
u
1
,
u
2
,
…
,
u
k
}
be a basis of
U
⟹
S
=
{
T
(
u
1
)
,
T
(
u
2
)
,
…
,
T
(
u
k
)
}
⊆
U
Let
S
be a linear dependence
⟹
∃
i
∈
[
1
,
k
]
:
T
(
u
i
)
∈
s
p
(
S
∖
{
T
(
u
i
)
}
)
Let
T
(
u
1
)
∈
s
p
(
S
∖
{
T
(
u
1
)
}
)
(WLOG)
⟹
∃
{
α
j
}
j
∈
[
2
,
k
]
:
α
j
T
(
u
1
)
=
∑
j
=
2
k
T
(
u
j
)
⟹
u
1
=
T
−
1
T
(
u
1
)
=
T
−
1
(
∑
j
=
2
k
α
j
T
(
u
j
)
)
=
T
−
1
T
(
∑
j
=
2
k
α
j
u
j
)
=
∑
j
=
2
k
α
j
u
j
⟹
u
1
∈
s
p
(
B
∖
{
u
1
}
)
−
Contradiction!
⟹
S
is a linear independence
⟹
s
p
(
S
)
=
U
⟹
T
[
U
]
=
U
Let
u
∈
U
T
[
U
]
=
U
⟹
∃
v
∈
U
:
T
(
v
)
=
u
⟹
T
−
1
(
u
)
=
T
−
1
(
T
(
v
)
)
=
v
∈
U
⟹
U
is
T
−
1
-invariant