Exam 2024 (B)

1a

Let V,W be finitely generated vector spaces over FLet T:VW be a linear transformationProve: T is invertible T is bijectiveProof:Let T be invertiblelinear transformation T1:WV,TT1=IW,T1T=IVTT1=IWTT1 is surjectiveT is surjectiveT1T=IVT1T is injectiveT is injectiveT is bijectiveLet T be bijectiveT is a function function S:VW,TS=IW,ST=IVLet w1,w2W,αFS(w1+αw2)=ST(S(w1+αw2))=S(TS(w1+αw2))=S(TS(w1)+αTS(w2))==S(T(S(w1)+αS(w2)))=ST(S(w1)+αS(w2))=S(w1)+αS(w2)S is a linear transformationT is invertible

1b

Let T:R2R2T((xy))=(2xx+y)Let B={(11),(21)} basis of R2Find [T]BBSolution:[T]BB=([T(11)]B[T(21)]B)=([(22)]B[(43)]B)=(2201)

2

U=sp{(0001),(1101)}W={(abcd)|ad=0a+b+c2d=0}Find basis and dimension of U+W,UWSolution:W={(abcd)|ad=0a+b+c2d=0}={(dbcd)|b+c=d}={(b+cbcb+c)}==sp{(1101),(1011)}U+W=sp{UW}=sp{(0001),(1101),(1011)}{(0001),(1101),(1011)} is a linear independence and is a basis of U+Wdim(U+W)=3Let vUWα(0001)+β(1101)=γ(1101)+δ(1011)(βγδβγδα+βγδ)=(0000)δ=0β=γα=0v=(ββ0β)UW=sp{(1101)}{(1101)} is a basis of UW and dim(UW)=1Alternative solution:sp{(0111)}U and sp{(0111)}Wsp{(0111)}UWdim(U+W)3=dim(U)2+dim(W)2dim(UW)dim(UW)=1sp{(0111)}=UW

3a

Let T:R3R3 be a linear transformationT(101)=(121),T(123)=(111),T(222)=(232)How many linear transformations T satisfy these conditions?Solution:(222)=(101)+(123)T(222)=T(101)+T(123)Such T existsLet B={(101),(123),v3} be a basis of R3By the defining theorem uR3:!T:{T(101)=(121)T(123)=(111)T(v3)=uThere exists an infinite number of such linear transformations

3b

Let V be a finitely generated vector spaceLet T,S:VV be linear transformationsProve: dim(ker(TS))dim(ker(T))+dim(ker(S))Proof:Let R:ker(TS)V,R(v)=S(v)vker(ST){T(S(v))=T(0)=0vker(S)T(S(v))=0S(v)ker(T)vker(S)Im(R)=ker(T)vker(R)R(v)=S(v)=0vker(S)ker(R)=ker(ST)ker(S)dim(ker(ST))=dim(ker(R))+dim(Im(R))==dim(ker(S)ker(ST))+dim(ker(T))ker(S)ker(TS)ker(S)dim(ker(S)ker(TS))dim(ker(S))dim(ker(TS))dim(ker(S))+dim(ker(T))

4

Let V be a finitely generated vector space, dim(V)2Let T,S:VV be linear transformations

4a

Prove or disprove: TS is surjectiveT is an isomorphismProof:Let TS be surjectiveTS is surjectiveT is surjectivedim(V)=dim(V)T is injectiveT is bijectiveT is invertible (an isomorphism)

4b

Prove or disprove: Im(T+S)Im(T)Im(S)Im(T)Proof:Let Im(T+S)Im(T)Let uIm(S)vV:S(v)=u(T+S)(v)=T(v)+S(v)Im(T)wV:T(w)=T(v)+S(v)u=S(v)=T(wv)uIm(T)Im(S)Im(T)

4c

Prove or disprove: ker(T+S)ker(T)ker(S)ker(T)Disproof:Let T=IVLet S=0VT+S=Tker(T+S)=ker(T)ker(T)ker(T)={0}ker(S)=Vdim(V)2V{0}

5

Let V be a finitely generated vector spaceLet T:VV be a linear transformationU is called T-invariant if T[U]UIn other words uU:T(u)U

5a

Let T:VV be a linear transformationLet U,WV be T-invariant

5a.i

Prove: U+W is T-invariantProof:Let vU+WuU,wW:v=u+wT(v)=T(u+w)=T(u)U+T(w)WU+WU+W is T-invariant

5a.ii

Prove: T[U]+T[W]=VU+W=VProof:UV,WVU+WVLet vVT[U]+T[W]=VuU,wW:T(u)+T(w)=vT(u)U,T(w)WT(u)+T(w)U+WvU+WVU+WU+W=V

5b

Let T,S:VV be linear transformationsLet TS=ST

5b.i

Prove: Im(S) is T-invariantProof:Let uIm(S)vV:S(v)=uS(v)=uT(S(v))=T(u)S(T(v))=T(u)T(u)Im(S)Im(S) is T-invariant

5b.ii

Prove: ker(S) is T-invariantProof:Let vker(S)S(v)=0T(S(v))=T(0)=0S(T(v))=T(S(v))=0T(v)ker(S)ker(S) is T-invariant

5c

Let T:VV be an isomorphismLet UV be T-invariantProve: U is T1-invariantProof:Let B={u1,u2,,uk} be a basis of US={T(u1),T(u2),,T(uk)}ULet S be a linear dependencei[1,k]:T(ui)sp(S{T(ui)})Let T(u1)sp(S{T(u1)})(WLOG){αj}j[2,k]:αjT(u1)=j=2kT(uj)u1=T1T(u1)=T1(j=2kαjT(uj))=T1T(j=2kαjuj)=j=2kαjuju1sp(B{u1})Contradiction!S is a linear independencesp(S)=UT[U]=ULet uUT[U]=UvU:T(v)=uT1(u)=T1(T(v))=vUU is T1-invariant