Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Exam 2024 (C)
1a
Let
V
be a vector space over
F
Let
S
⊆
V
1.
S
is a linear dependence
2.
∃
v
∈
S
:
v
∈
s
p
(
S
∖
{
v
}
)
3.
∃
v
∈
S
:
s
p
(
S
)
=
s
p
(
S
∖
{
v
}
)
1
⟺
2
⟺
3
Proof:
Let
S
=
{
v
1
,
v
2
,
…
,
v
n
}
Let
1
⟹
∃
α
i
≠
0
:
∑
i
=
1
n
α
i
v
i
=
0
Let
α
1
≠
0
(WLOG)
⟹
v
1
=
∑
i
=
2
n
(
−
α
i
α
i
−
1
)
v
i
∀
i
∈
[
2
,
n
]
:
v
i
≠
v
1
⟹
v
1
∈
s
p
(
S
∖
{
v
1
}
)
⟹
1
⟹
2
Let
2
Let
v
1
∈
s
p
(
S
∖
{
v
1
}
)
(WLOG)
S
∖
{
v
1
}
⊆
S
⟹
s
p
(
S
∖
{
v
1
}
)
⊆
s
p
(
S
)
Let
u
∈
s
p
(
S
)
u
=
∑
i
=
1
n
α
i
v
i
=
α
1
v
1
+
∑
i
=
2
n
α
i
v
i
v
1
∈
s
p
(
S
∖
{
v
1
}
)
⟹
v
1
=
∑
j
=
2
n
β
j
v
j
⟹
u
=
α
1
∑
j
=
2
n
β
j
v
j
+
∑
i
=
2
n
α
i
v
i
=
∑
i
=
2
n
(
α
1
β
i
+
α
i
)
v
i
⟹
u
∈
s
p
(
S
∖
{
v
1
}
)
⟹
s
p
(
S
)
⊆
s
p
(
S
∖
{
v
1
}
)
⟹
s
p
(
S
)
=
s
p
(
S
∖
{
v
1
}
)
⟹
2
⟹
3
Let
3
Let
s
p
(
S
∖
{
v
1
}
)
=
s
p
(
S
)
(WLOG)
v
1
∈
S
⟹
v
1
∈
s
p
(
S
)
⟹
v
1
∈
s
p
(
S
∖
{
v
1
}
)
⟹
v
1
=
∑
i
=
2
n
α
i
v
i
⟹
v
1
−
∑
i
=
2
n
α
i
v
i
=
0
⟹
{
1
,
−
α
2
,
−
α
3
,
…
,
−
α
n
}
is a non-trivial linear combination of
S
⟹
S
is a linear dependence
⟹
3
⟹
1
⟹
[
1
⟹
2
⟹
3
⟹
1
]
⟹
1
⟺
2
⟺
3
1b
Let
T
:
R
2
→
R
2
T
(
(
x
y
)
)
=
(
2
x
x
+
y
)
Let
B
=
{
(
1
3
)
,
(
1
1
)
}
basis of
R
2
Find
[
T
]
B
B
Solution:
[
T
]
B
B
=
(
[
T
(
1
3
)
]
B
[
T
(
1
1
)
]
B
)
=
(
[
(
2
4
)
]
B
[
(
2
2
)
]
B
)
=
(
1
0
1
2
)
2
U
=
{
p
(
x
)
∈
R
2
[
x
]
|
p
′
(
1
)
=
0
p
(
1
)
=
0
}
W
=
s
p
(
{
1
+
x
+
x
2
,
x
+
x
2
}
)
Find basis and dimension of
U
+
W
,
U
∩
W
Solution:
Let
p
(
x
)
∈
R
2
[
x
]
p
(
x
)
=
a
+
b
x
+
c
x
2
⟹
p
′
(
x
)
=
b
+
2
c
x
p
′
(
1
)
=
b
+
2
c
p
(
1
)
=
a
+
b
+
c
{
b
+
2
c
=
0
a
+
b
+
c
=
0
⟹
{
b
=
−
2
c
a
=
c
⟹
U
=
s
p
(
{
1
−
2
x
+
x
2
}
)
U
+
W
=
s
p
(
U
∪
W
)
=
s
p
(
{
1
+
x
+
x
2
,
x
+
x
2
,
1
−
2
x
+
x
2
}
)
(
1
0
1
0
1
1
−
2
0
1
1
1
0
)
→
(
1
0
1
0
0
1
−
3
0
0
1
0
0
)
→
(
1
0
1
0
0
1
−
3
0
0
0
3
0
)
⟹
{
1
+
x
+
x
2
,
x
+
x
2
,
1
−
2
x
+
x
2
}
is a linear independence and is a basis of
U
+
W
⟹
d
i
m
(
U
+
W
)
=
3
d
i
m
(
U
+
W
)
⏟
3
=
d
i
m
(
U
)
⏟
1
+
d
i
m
(
W
)
⏟
2
−
d
i
m
(
U
∩
W
)
⟹
d
i
m
(
U
∩
W
)
=
0
⟹
{
0
}
is a basis of
U
∩
W
3a
Let
V
be a vector space,
d
i
m
(
V
)
=
n
Let
T
,
S
:
V
→
V
linear transformations such that
T
S
=
T
Prove:
d
i
m
(
I
m
(
T
)
)
+
d
i
m
(
I
m
(
S
−
I
)
)
≤
n
Proof:
T
S
=
T
⟹
T
S
−
T
=
0
∀
v
∈
V
:
T
(
S
(
v
)
)
−
T
(
v
)
=
T
(
S
(
v
)
−
v
)
=
T
(
S
(
v
)
−
I
(
v
)
)
=
T
(
S
−
I
)
(
v
)
=
0
⟹
∀
u
∈
I
m
(
S
−
I
)
:
T
(
u
)
=
0
⟹
I
m
(
S
−
I
)
⊆
k
e
r
(
T
)
⟹
d
i
m
(
I
m
(
S
−
I
)
)
≤
d
i
m
(
k
e
r
(
T
)
)
⟹
d
i
m
(
I
m
(
S
−
I
)
)
≤
n
−
d
i
m
(
I
m
(
T
)
)
⟹
d
i
m
(
I
m
(
T
)
)
+
d
i
m
(
I
m
(
S
−
I
)
)
≤
n
3b
Find
T
,
S
:
R
2
→
R
2
:
T
≠
0
,
S
≠
I
,
T
S
=
T
Solution:
T
(
S
(
v
)
)
=
T
(
v
)
Let
S
(
x
y
)
=
(
x
0
)
T
(
(
x
y
)
)
=
T
S
(
x
y
)
=
T
(
x
0
)
⟹
T
(
x
−
x
y
−
0
)
=
T
(
0
y
)
=
(
0
0
)
Let
T
(
x
y
)
=
(
x
0
)
T
S
=
T
4a
Let
A
∈
R
n
×
m
,
B
∈
R
n
×
k
such that
∃
!
C
:
A
=
B
C
Prove or disprove:
r
a
n
k
(
B
)
=
k
Proof:
Let
S
=
{
C
1
(
B
)
,
C
2
(
B
)
,
…
,
C
(
k
)
(
B
)
}
be a linear dependence
⟹
∃
i
∈
[
1
,
k
]
:
C
i
(
B
)
∈
s
p
(
S
∖
{
C
i
(
B
)
}
)
Let
C
1
(
B
)
∈
s
p
(
S
∖
{
C
1
(
B
)
}
)
(WLOG)
⟹
∃
{
β
j
}
j
∈
[
2
,
k
]
⊆
R
:
C
1
(
B
)
=
∑
j
=
2
k
β
j
C
j
(
B
)
A
=
B
C
⟹
∀
i
∈
[
1
,
m
]
:
C
i
(
A
)
=
C
i
(
B
C
)
=
B
C
i
(
C
)
C
1
(
A
)
=
C
1
(
B
C
)
=
B
C
1
(
C
)
=
∑
i
=
1
k
C
1
i
C
i
(
B
)
=
C
11
C
1
(
B
)
+
∑
i
=
2
k
C
1
i
C
i
(
B
)
=
=
C
11
∑
j
=
2
k
β
j
C
j
(
B
)
+
∑
i
=
2
k
C
1
i
C
i
(
B
)
=
∑
i
=
2
k
(
C
11
β
i
+
C
1
i
)
C
i
(
B
)
Let
v
=
(
C
11
−
1
C
12
+
β
2
⋮
C
1
k
+
β
k
)
Let
C
^
=
(
v
|
|
C
2
(
C
)
|
|
…
C
m
(
C
)
|
|
)
C
1
(
B
C
^
)
=
B
C
1
(
C
^
)
=
⋯
=
∑
i
=
2
k
(
C
11
β
i
−
β
i
+
C
1
i
+
β
i
)
C
i
(
B
)
=
=
∑
i
=
2
k
(
C
11
β
i
+
C
1
i
)
C
i
(
B
)
=
C
1
(
A
)
∀
i
∈
[
2
,
m
]
:
C
i
(
B
C
^
)
=
B
C
i
(
C
^
)
=
B
C
i
(
C
)
=
C
i
(
A
)
⟹
A
=
B
C
^
∧
C
^
≠
C
−
Contradiction!
⟹
S
is a linear independence
⟹
d
i
m
(
C
(
B
)
)
=
k
⟹
r
a
n
k
(
B
)
=
k
Alternative proof (might be wrong):
C
i
(
A
)
=
C
i
(
B
C
)
=
B
C
i
(
C
)
∃
!
C
⟹
C
i
(
C
)
is a unique solution of
B
x
=
C
i
(
A
)
Let
k
>
n
⟹
C
F
(
B
)
has
k
−
n
free variables
⟹
B
x
=
C
i
(
A
)
has more than one solution
⟹
k
≤
n
Let
r
a
n
k
(
B
)
<
k
⟹
d
i
m
(
R
(
B
)
)
<
k
⟹
d
i
m
(
R
(
B
)
)
<
n
⟹
∃
i
∈
[
1
,
n
]
:
R
i
(
C
F
(
B
)
)
=
0
⟹
B
x
=
0
has infinitely many solutions
⟹
B
x
=
C
i
(
A
)
has zero or infinitely many solutions
−
Contradiction!
⟹
r
a
n
k
(
B
)
=
k
4b
Let
T
,
S
:
V
→
V
be linear transformations
Prove or disprove:
I
m
(
T
)
⊕
I
m
(
S
)
=
V
⟹
T
+
S
is injective
Disproof:
Let
V
=
R
2
Let
T
(
x
y
)
=
(
x
0
)
Let
S
(
x
y
)
=
(
0
x
)
I
m
(
T
)
=
s
p
{
(
1
0
)
}
I
m
(
S
)
=
s
p
{
(
0
1
)
}
I
m
(
T
)
∩
I
m
(
S
)
=
{
0
}
,
I
m
(
T
)
⊕
I
m
(
S
)
=
R
2
I
m
(
T
+
S
)
=
s
p
{
(
1
1
)
}
≠
R
2
⟹
T
+
S
is not surjective
d
i
m
(
V
)
=
d
i
m
(
V
)
⟹
T
+
S
is not injective
4c
Let
T
,
S
:
V
→
V
be linear transformations
Prove or disprove:
T
+
S
is injective
⟹
I
m
(
T
)
+
I
m
(
S
)
=
V
Proof:
Let
T
+
S
be injective
∀
v
∈
V
:
(
T
+
S
)
(
v
)
=
T
(
v
)
+
S
(
v
)
∈
I
m
(
T
)
+
I
m
(
S
)
⟹
I
m
(
T
+
S
)
⊆
I
m
(
T
)
+
I
m
(
S
)
d
i
m
(
V
)
=
d
i
m
(
V
)
⟹
T
+
S
is surjective
⟹
I
m
(
T
+
S
)
=
V
V
=
I
m
(
T
+
S
)
⊆
I
m
(
T
)
+
I
m
(
S
)
⊆
V
⟹
I
m
(
T
)
+
I
m
(
S
)
=
V
5a
Let
A
∈
R
n
×
n
E
i
j
=
{
1
i
,
j
0
otherwise
5a.i
∀
1
≤
k
≤
n
:
define
C
k
(
A
E
i
j
)
via
A
,
i
,
j
Solution:
Let
1
≤
k
≤
n
Let
k
≠
j
⟹
C
k
(
A
E
i
j
)
=
A
C
k
(
E
i
j
)
=
A
⋅
0
=
0
Let
k
=
j
⟹
C
k
(
A
E
i
j
)
=
C
j
(
A
E
i
j
)
=
A
C
j
(
E
i
j
)
=
A
e
i
=
C
i
(
A
)
⟹
C
k
(
A
E
i
j
)
=
{
C
i
(
A
)
k
=
j
0
otherwise
5a.ii
∀
1
≤
k
≤
n
:
define
R
k
(
E
i
j
A
)
via
A
,
i
,
j
Solution:
Let
1
≤
k
≤
n
Let
k
≠
i
⟹
R
k
(
E
i
j
A
)
=
R
k
(
E
i
j
)
A
=
0
⋅
A
=
0
Let
k
=
i
⟹
R
k
(
E
i
j
A
)
=
R
i
(
E
i
j
A
)
=
R
i
(
E
i
j
)
A
=
e
j
T
A
=
R
j
(
A
)
⟹
R
k
(
E
i
j
A
)
=
{
R
j
(
A
)
k
=
i
0
otherwise
5b
Let
A
∈
R
n
×
n
:
∀
B
∈
R
n
×
n
:
A
B
=
B
A
Prove:
A
is diagonal
Proof:
∀
i
∈
[
1
,
n
]
:
E
i
i
A
=
(
0
⋮
0
R
i
(
A
)
0
⋮
0
)
=
A
E
i
i
=
(
0
|
|
…
0
|
|
C
i
(
A
)
|
|
0
|
|
…
0
|
|
)
For example:
E
11
A
=
(
A
11
A
12
A
13
0
0
0
0
0
0
)
=
A
E
11
=
(
A
11
0
0
A
21
0
0
A
31
0
0
)
⟹
{
A
12
=
0
A
13
=
0
A
21
=
0
A
31
=
0
⟹
∀
i
∈
[
1
,
n
]
:
∀
j
∈
[
1
,
n
]
:
[
i
≠
j
⟹
A
i
j
=
0
]
⟹
A
is diagonal
5c
Let
A
∈
R
n
×
n
:
∀
B
∈
R
n
×
n
:
A
B
=
B
A
Prove:
A
is scalar
(
∃
α
∈
R
:
A
=
α
I
)
Proof:
∀
i
∈
[
2
,
n
]
:
E
1
i
A
=
(
R
i
(
A
)
0
⋮
0
)
=
A
E
1
i
=
(
0
|
|
…
0
|
|
C
1
(
A
)
|
|
0
|
|
…
0
|
|
)
For example:
E
12
A
=
(
A
21
A
22
A
23
0
0
0
0
0
0
)
=
A
E
12
=
(
0
A
11
0
0
A
12
0
0
A
13
0
)
⟹
A
22
=
A
11
⟹
∀
i
∈
[
1
,
n
]
:
A
i
i
=
A
11
⟹
A
11
∈
R
,
A
=
A
11
I
5d
Let
A
∈
R
n
×
n
Prove:
[
∀
B
∈
R
n
×
n
:
A
B
=
B
A
]
⟺
∃
α
∈
R
:
A
=
α
I
Proof:
One direction is proved in 5c
Let
∃
α
∈
R
:
A
=
α
I
Let
B
∈
R
n
×
n
A
B
=
α
I
B
=
α
(
I
B
)
=
α
B
=
(
B
I
)
α
=
B
α
I
=
B
A
⟹
∀
B
∈
R
n
×
n
:
A
B
=
B
A