Exam 2024 (C)

1a

Let V be a vector space over FLet SV1.S is a linear dependence2.vS:vsp(S{v})3.vS:sp(S)=sp(S{v})123Proof:Let S={v1,v2,,vn}Let 1αi0:i=1nαivi=0Let α10 (WLOG)v1=i=2n(αiαi1)vii[2,n]:viv1v1sp(S{v1})12Let 2Let v1sp(S{v1}) (WLOG)S{v1}Ssp(S{v1})sp(S)Let usp(S)u=i=1nαivi=α1v1+i=2nαiviv1sp(S{v1})v1=j=2nβjvju=α1j=2nβjvj+i=2nαivi=i=2n(α1βi+αi)viusp(S{v1})sp(S)sp(S{v1})sp(S)=sp(S{v1})23Let 3Let sp(S{v1})=sp(S) (WLOG)v1Sv1sp(S)v1sp(S{v1})v1=i=2nαiviv1i=2nαivi=0{1,α2,α3,,αn} is a non-trivial linear combination of SS is a linear dependence31[1231]123

1b

Let T:R2R2T((xy))=(2xx+y)Let B={(13),(11)} basis of R2Find [T]BBSolution:[T]BB=([T(13)]B[T(11)]B)=([(24)]B[(22)]B)=(1012)

2

U={p(x)R2[x]|p(1)=0p(1)=0}W=sp({1+x+x2,x+x2})Find basis and dimension of U+W,UWSolution:Let p(x)R2[x]p(x)=a+bx+cx2p(x)=b+2cxp(1)=b+2cp(1)=a+b+c{b+2c=0a+b+c=0{b=2ca=cU=sp({12x+x2})U+W=sp(UW)=sp({1+x+x2,x+x2,12x+x2})(101011201110)(101001300100)(101001300030){1+x+x2,x+x2,12x+x2} is a linear independence and is a basis of U+Wdim(U+W)=3dim(U+W)3=dim(U)1+dim(W)2dim(UW)dim(UW)=0{0} is a basis of UW

3a

Let V be a vector space, dim(V)=nLet T,S:VV linear transformations such thatTS=TProve: dim(Im(T))+dim(Im(SI))nProof:TS=TTST=0vV:T(S(v))T(v)=T(S(v)v)=T(S(v)I(v))=T(SI)(v)=0uIm(SI):T(u)=0Im(SI)ker(T)dim(Im(SI))dim(ker(T))dim(Im(SI))ndim(Im(T))dim(Im(T))+dim(Im(SI))n

3b

Find T,S:R2R2:T0,SI,TS=TSolution:T(S(v))=T(v)Let S(xy)=(x0)T((xy))=TS(xy)=T(x0)T(xxy0)=T(0y)=(00)Let T(xy)=(x0)TS=T

4a

Let ARn×m,BRn×k such that!C:A=BCProve or disprove: rank(B)=kProof:Let S={C1(B),C2(B),,C(k)(B)} be a linear dependencei[1,k]:Ci(B)sp(S{Ci(B)})Let C1(B)sp(S{C1(B)})(WLOG){βj}j[2,k]R:C1(B)=j=2kβjCj(B)A=BCi[1,m]:Ci(A)=Ci(BC)=BCi(C)C1(A)=C1(BC)=BC1(C)=i=1kC1iCi(B)=C11C1(B)+i=2kC1iCi(B)==C11j=2kβjCj(B)+i=2kC1iCi(B)=i=2k(C11βi+C1i)Ci(B)Let v=(C111C12+β2C1k+βk)Let C^=(v||C2(C)||Cm(C)||)C1(BC^)=BC1(C^)==i=2k(C11βiβi+C1i+βi)Ci(B)==i=2k(C11βi+C1i)Ci(B)=C1(A)i[2,m]:Ci(BC^)=BCi(C^)=BCi(C)=Ci(A)A=BC^C^CContradiction!S is a linear independencedim(C(B))=krank(B)=kAlternative proof (might be wrong):Ci(A)=Ci(BC)=BCi(C)!CCi(C) is a unique solution of Bx=Ci(A)Let k>nCF(B) has kn free variablesBx=Ci(A) has more than one solutionknLet rank(B)<kdim(R(B))<kdim(R(B))<ni[1,n]:Ri(CF(B))=0Bx=0 has infinitely many solutionsBx=Ci(A) has zero or infinitely many solutionsContradiction!rank(B)=k

4b

Let T,S:VV be linear transformationsProve or disprove: Im(T)Im(S)=VT+S is injectiveDisproof:Let V=R2Let T(xy)=(x0)Let S(xy)=(0x)Im(T)=sp{(10)}Im(S)=sp{(01)}Im(T)Im(S)={0},Im(T)Im(S)=R2Im(T+S)=sp{(11)}R2T+S is not surjectivedim(V)=dim(V)T+S is not injective

4c

Let T,S:VV be linear transformationsProve or disprove: T+S is injectiveIm(T)+Im(S)=VProof:Let T+S be injectivevV:(T+S)(v)=T(v)+S(v)Im(T)+Im(S)Im(T+S)Im(T)+Im(S)dim(V)=dim(V)T+S is surjectiveIm(T+S)=VV=Im(T+S)Im(T)+Im(S)VIm(T)+Im(S)=V

5a

Let ARn×nEij={1i,j0otherwise

5a.i

1kn:define Ck(AEij) via A,i,jSolution:Let 1knLet kjCk(AEij)=ACk(Eij)=A0=0Let k=jCk(AEij)=Cj(AEij)=ACj(Eij)=Aei=Ci(A)Ck(AEij)={Ci(A)k=j0otherwise

5a.ii

1kn:define Rk(EijA) via A,i,jSolution:Let 1knLet kiRk(EijA)=Rk(Eij)A=0A=0Let k=iRk(EijA)=Ri(EijA)=Ri(Eij)A=ejTA=Rj(A)Rk(EijA)={Rj(A)k=i0otherwise

5b

Let ARn×n:BRn×n:AB=BAProve: A is diagonalProof:i[1,n]:EiiA=(00Ri(A)00)=AEii=(0||0||Ci(A)||0||0||)For example:E11A=(A11A12A13000000)=AE11=(A1100A2100A3100){A12=0A13=0A21=0A31=0i[1,n]:j[1,n]:[ijAij=0]A is diagonal

5c

Let ARn×n:BRn×n:AB=BAProve: A is scalar (αR:A=αI)Proof:i[2,n]:E1iA=(Ri(A)00)=AE1i=(0||0||C1(A)||0||0||)For example:E12A=(A21A22A23000000)=AE12=(0A1100A1200A130)A22=A11i[1,n]:Aii=A11A11R,A=A11I

5d

Let ARn×nProve: [BRn×n:AB=BA]αR:A=αIProof:One direction is proved in 5cLet αR:A=αILet BRn×nAB=αIB=α(IB)=αB=(BI)α=BαI=BABRn×n:AB=BA