Linear-1 11

Linear-1 11

Coordinate vectors #definition

Let V=R2Let BV={(10),(01)}(43)=4(10)+3(01)[(43)]BV=(43)Now let BV={(11),(12)}(43)=5(11)1(12)[(43)]BV=(51)Let V be a vector space over FLet B={v1,v2,,vn} basis of VLet vVα1,,αn:v=i=1nαiviThen [v]B=(α1αn) is called a coordinate vectorCoordinate vector is a function:[]B:VFnThis function is injective:Let [v]B=[u]Bv=α1v1+α2v2++αnvn=uv=u

Properties of coordinate vector #lemma

Let V be a finitely generated vector space over FLet B={v1,v2,,vn} basis of VThen1.v,uV:[v+u]B=[v]B+[u]B2.vV,αF:[αv]B=α[v]B3.[v]B=0v=0Proof for 1:Let v,uVsp(B)=Vv=i=1nαivi,u=i=1nβivi[v]B+[u]B=(α1+β1αn+βn)[v+u]B=[i=1nαivi+i=1nβivi]B=(α1+β1αn+βn)[v+u]B=[v]B+[u]BProof for 2:Let vV,αFsp(B)=Vv=i=1nαiviα[v]B=α(α1αn)[αv]B=[αi=1nαivi]=(αα1ααn)=α(α1αn)[αv]B=α[vB]Proof for 3:Let vVLet [v]B=00v1+0v2++0vn=vv=0Let v=0sp(B)=Vv=α1v1++αnvn=0B is a linear independenceα1==αn=0[v]B=0[v]B=0v=0

Remark

[]B is invertible (an isomorphism)Proof:1. and 2.[]B is a linear transformation3.ker([]B)={0}[]B is injectivedim(Fn)=n=dim(V)[]B is an isomorphismIsomorphism is denoted as VFn

LD is linear dependence
LID is linear independence

Linear maps do not affect LD/LID #lemma

Let V,U finitely generated vector spacesLet T:VU be an isomorphismThen1.v1,,vnV:{v1,,vn} is a LID{T(v1),,T(vn)} is a LID2.v1,,vn,wV:wsp({v1,,vn})T(w)sp({T(v1),,T(vn)})Proof for 1:TODOBYYOURSELFProof for 2:Let w,v1,,vnVwsp({v1,,vn})w=i=1nαiviT is an isomorphismT is bijectiveT(w)=T(i=1nαivi)=i=1nT(αivi)=i=1nαiT(vi)T(w)sp({T(v1),,T(vn)})
AFm×nTA:FnFmTA(v)=AvLet T:VULet B basis of VLet C basis of UWe want to find a matrix A such thatvV:T(v)=A[v]B=[T(v)]CvV:T(v)=TA([v]B)=[T(v)]C

Example

Let T:R3[x]R2[x]T(p(x))=p(x)(a+bx+cx2+dx3)=b+2cx+3dx2A(abcd)=(b2c3d)A=(010000200003)

Representation matrix #theorem

Let B={v1,,vn} basis of VLet C={u1,,um} basis of ULet T:VUdim(V)=ndim(U)=mLet AFm×nLet vVv=i=1nαiviA[v]B=A[i=1nαivi]B=Ai=1nαi[vi]B=i=1nαiA[vi]B=i=1nαiTA([vi]B)==i=1nαi[T(vi)]C=[i=1nαiT(vi)]C=[T(i=1nαivi)]C=[T(v)]C[vi]B=ei=(010)FnA[vi]B=Aei which is i-th column of Ai-th column of A is equal to [T(vi)]C[T]CB is a notation for transformation matrix AA=[T]CB=([T(v1)]C[T(vn)]C)Fm×n[T]CB=([T(v1)]C[T(vn)]C)Fm×nFor the previous example:[T]S2S1=([T(1)]S2[T(x)]S2[T(x2)]S2[T(x3)]S2)=([0]S2[1]S2[2x]S2[3x2]S2)[T]S2S1=(010000200003)Now let I:VBVCMeaning it doesn’t change the vector, but represents it via different basisThen [I]CB=([I(v1)]C[I(vn)]C)=([v1]C[vn]C)[I]CB[I]BD[v]D[v]B=[I]CB[v]B=[v]C[I]CB[I]BD=[I]CD

Side notes

Let TA:FnFmTA(v)=AvTA=[]CT[]B1TA[]B=[]CTTA([v]B)=[T(v)]CA[v]B=[T(v)]C[vi]B=ei=(010)FnA[vi]B=Aei which is i-th column of Ai-th column of A is equal to [T(vi)]CA=[T]CB=([T(v1)]C[T(vn)]C)Fm×n