Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Linear-1 11
Linear-1 11
Coordinate vectors
#definition
Let
V
=
R
2
Let
B
V
=
{
(
1
0
)
,
(
0
1
)
}
⟹
(
4
3
)
=
4
(
1
0
)
+
3
(
0
1
)
⟹
[
(
4
3
)
]
B
V
=
(
4
3
)
Now let
B
V
=
{
(
1
1
)
,
(
1
2
)
}
⟹
(
4
3
)
=
5
(
1
1
)
−
1
(
1
2
)
⟹
[
(
4
3
)
]
B
V
=
(
5
−
1
)
Let
V
be a vector space over
F
Let
B
=
{
v
1
,
v
2
,
…
,
v
n
}
basis of
V
Let
v
∈
V
∃
α
1
,
…
,
α
n
:
v
=
∑
i
=
1
n
α
i
v
i
Then
[
v
]
B
=
(
α
1
⋮
α
n
)
is called a coordinate vector
Coordinate vector is a function:
[
]
B
:
V
→
F
n
This function is injective:
Let
[
v
]
B
=
[
u
]
B
⟹
v
=
α
1
v
1
+
α
2
v
2
+
⋯
+
α
n
v
n
=
u
⟹
v
=
u
Properties of coordinate vector
#lemma
Let
V
be a finitely generated vector space over
F
Let
B
=
{
v
1
,
v
2
,
…
,
v
n
}
basis of
V
Then
1.
∀
v
,
u
∈
V
:
[
v
+
u
]
B
=
[
v
]
B
+
[
u
]
B
2.
∀
v
∈
V
,
α
∈
F
:
[
α
v
]
B
=
α
[
v
]
B
3.
[
v
]
B
=
0
⟺
v
=
0
Proof for 1:
Let
v
,
u
∈
V
s
p
(
B
)
=
V
⟹
v
=
∑
i
=
1
n
α
i
v
i
,
u
=
∑
i
=
1
n
β
i
v
i
⟹
[
v
]
B
+
[
u
]
B
=
(
α
1
+
β
1
⋮
α
n
+
β
n
)
[
v
+
u
]
B
=
[
∑
i
=
1
n
α
i
v
i
+
∑
i
=
1
n
β
i
v
i
]
B
=
(
α
1
+
β
1
⋮
α
n
+
β
n
)
⟹
[
v
+
u
]
B
=
[
v
]
B
+
[
u
]
B
Proof for 2:
Let
v
∈
V
,
α
∈
F
s
p
(
B
)
=
V
⟹
v
=
∑
i
=
1
n
α
i
v
i
α
[
v
]
B
=
α
(
α
1
⋮
α
n
)
[
α
v
]
B
=
[
α
∑
i
=
1
n
α
i
v
i
]
=
(
α
α
1
⋮
α
α
n
)
=
α
(
α
1
⋮
α
n
)
⟹
[
α
v
]
B
=
α
[
v
B
]
Proof for 3:
Let
v
∈
V
Let
[
v
]
B
=
0
⟹
0
v
1
+
0
v
2
+
⋯
+
0
v
n
=
v
⟹
v
=
0
Let
v
=
0
s
p
(
B
)
=
V
⟹
v
=
α
1
v
1
+
⋯
+
α
n
v
n
=
0
B
is a linear independence
⟹
α
1
=
⋯
=
α
n
=
0
⟹
[
v
]
B
=
0
⟹
[
v
]
B
=
0
⟺
v
=
0
Remark
[
]
B
is invertible (an isomorphism)
Proof:
1.
and
2.
⟹
[
]
B
is a linear transformation
3.
⟹
k
e
r
(
[
]
B
)
=
{
0
}
⟹
[
]
B
is injective
d
i
m
(
F
n
)
=
n
=
d
i
m
(
V
)
⟹
[
]
B
is an isomorphism
Isomorphism is denoted as
V
≅
F
n
LD is linear dependence
LID is linear independence
Linear maps do not affect LD/LID
#lemma
Let
V
,
U
finitely generated vector spaces
Let
T
:
V
→
U
be an isomorphism
Then
1.
∀
v
1
,
…
,
v
n
∈
V
:
{
v
1
,
…
,
v
n
}
is a LID
⟺
{
T
(
v
1
)
,
…
,
T
(
v
n
)
}
is a LID
2.
∀
v
1
,
…
,
v
n
,
w
∈
V
:
w
∈
s
p
(
{
v
1
,
…
,
v
n
}
)
⟺
T
(
w
)
∈
s
p
(
{
T
(
v
1
)
,
…
,
T
(
v
n
)
}
)
Proof for 1:
T
O
D
O
B
Y
Y
O
U
R
S
E
L
F
Proof for 2:
Let
w
,
v
1
,
…
,
v
n
∈
V
w
∈
s
p
(
{
v
1
,
…
,
v
n
}
)
⟺
w
=
∑
i
=
1
n
α
i
v
i
⟺
⏟
T
is an isomorphism
⟹
T
is bijective
T
(
w
)
=
T
(
∑
i
=
1
n
α
i
v
i
)
=
∑
i
=
1
n
T
(
α
i
v
i
)
=
∑
i
=
1
n
α
i
T
(
v
i
)
⟺
T
(
w
)
∈
s
p
(
{
T
(
v
1
)
,
…
,
T
(
v
n
)
}
)
A
∈
F
m
×
n
T
A
:
F
n
→
F
m
T
A
(
v
)
=
A
v
Let
T
:
V
→
U
Let
B
basis of
V
Let
C
basis of
U
We want to find a matrix
A
such that
∀
v
∈
V
:
T
(
v
)
=
A
[
v
]
B
=
[
T
(
v
)
]
C
⟺
∀
v
∈
V
:
T
(
v
)
=
T
A
(
[
v
]
B
)
=
[
T
(
v
)
]
C
Example
Let
T
:
R
3
[
x
]
→
R
2
[
x
]
T
(
p
(
x
)
)
=
p
′
(
x
)
(
a
+
b
x
+
c
x
2
+
d
x
3
)
′
=
b
+
2
c
x
+
3
d
x
2
A
⋅
(
a
b
c
d
)
=
(
b
2
c
3
d
)
⟹
A
=
(
0
1
0
0
0
0
2
0
0
0
0
3
)
Representation matrix
#theorem
Let
B
=
{
v
1
,
…
,
v
n
}
basis of
V
Let
C
=
{
u
1
,
…
,
u
m
}
basis of
U
Let
T
:
V
→
U
d
i
m
(
V
)
=
n
d
i
m
(
U
)
=
m
Let
A
∈
F
m
×
n
Let
v
∈
V
⟹
v
=
∑
i
=
1
n
α
i
v
i
⟹
A
[
v
]
B
=
A
[
∑
i
=
1
n
α
i
v
i
]
B
=
A
∑
i
=
1
n
α
i
[
v
i
]
B
=
∑
i
=
1
n
α
i
A
[
v
i
]
B
=
∑
i
=
1
n
α
i
T
A
(
[
v
i
]
B
)
=
=
∑
i
=
1
n
α
i
[
T
(
v
i
)
]
C
=
[
∑
i
=
1
n
α
i
T
(
v
i
)
]
C
=
[
T
(
∑
i
=
1
n
α
i
v
i
)
]
C
=
[
T
(
v
)
]
C
[
v
i
]
B
=
e
i
=
(
0
⋮
1
⋮
0
)
∈
F
n
⟹
A
[
v
i
]
B
=
A
e
i
which is
i
-th column of
A
⟹
i
-th column of
A
is equal to
[
T
(
v
i
)
]
C
[
T
]
C
B
is a notation for transformation matrix
A
⟹
A
=
[
T
]
C
B
=
(
⋮
⋮
[
T
(
v
1
)
]
C
…
[
T
(
v
n
)
]
C
⋮
⋮
)
∈
F
m
×
n
[
T
]
C
B
=
(
⋮
⋮
[
T
(
v
1
)
]
C
…
[
T
(
v
n
)
]
C
⋮
⋮
)
∈
F
m
×
n
For the previous example:
[
T
]
S
2
S
1
=
(
⋮
⋮
⋮
⋮
[
T
(
1
)
]
S
2
[
T
(
x
)
]
S
2
[
T
(
x
2
)
]
S
2
[
T
(
x
3
)
]
S
2
⋮
⋮
⋮
⋮
)
=
(
⋮
⋮
⋮
⋮
[
0
]
S
2
[
1
]
S
2
[
2
x
]
S
2
[
3
x
2
]
S
2
⋮
⋮
⋮
⋮
)
⟹
[
T
]
S
2
S
1
=
(
0
1
0
0
0
0
2
0
0
0
0
3
)
Now let
I
:
V
B
→
V
C
Meaning it doesn’t change the vector, but represents it via different basis
Then
[
I
]
C
B
=
(
[
I
(
v
1
)
]
C
…
[
I
(
v
n
)
]
C
)
=
(
[
v
1
]
C
…
[
v
n
]
C
)
[
I
]
C
B
[
I
]
B
D
[
v
]
D
⏟
[
v
]
B
=
[
I
]
C
B
[
v
]
B
=
[
v
]
C
⟹
[
I
]
C
B
[
I
]
B
D
=
[
I
]
C
D
Side notes
Let
T
A
:
F
n
→
F
m
T
A
(
v
)
=
A
v
T
A
=
[
]
C
∘
T
∘
[
]
B
−
1
⟹
T
A
∘
[
]
B
=
[
]
C
∘
T
⟹
T
A
(
[
v
]
B
)
=
[
T
(
v
)
]
C
⟹
A
[
v
]
B
=
[
T
(
v
)
]
C
[
v
i
]
B
=
e
i
=
(
0
⋮
1
⋮
0
)
∈
F
n
⟹
A
[
v
i
]
B
=
A
e
i
which is
i
-th column of
A
⟹
i
-th column of
A
is equal to
[
T
(
v
i
)
]
C
⟹
A
=
[
T
]
C
B
=
(
⋮
⋮
[
T
(
v
1
)
]
C
…
[
T
(
v
n
)
]
C
⋮
⋮
)
∈
F
m
×
n