Linear-1 12

Linear-1 12

Properties of representation matrix #lemma

Let T2,T1:VU linear transformationsS:UW linear transformation B,C,E bases of V,U,WαFThen:1.[T2+T1]CB=[T2]CB+[T1]CB2.[αT1]CB=α[T1]CB3.[ST1ST1]EB=[S]EC[T1]CBProof for 1.Let vV([T2]CB+[T1]CB)[v]B=[T2]CB[v]B+[T1]CB[v]B=[T2(v)]C+[T1(v)]C=[T2(v)+T1(v)]C==[(T2+T1)(v)]C[T2]CB+[T1]CB=[T2+T1]CBProof for 2.Let vV(α[T1]CB)[v]B=α([T1]CB[v]B)=α[T1(v)]C=[(αT1)(v)]Cα[T1]CB=[αT1]CBProof for 3.Let vV([S]EC[T1]CB)[v]B=[S]EC([T1]CB[v]B)=[S]EC[T1(v)]C=[S(T1(v))]E=[(ST1)(v)]E[S]EC[T1]CB=[ST1]EB

Representation matrix of Identity transformation #lemma

Let V be a finitely generated vector space over FLet B basis of VThen [I]BB=IProof:Let vV[I]BB[v]B=[I(v)]B=[v]B[I]BB=I[I]BB=([I(v1)]B[I(vn)]B)=([v1]B[vn]B)i[1,n]:[vi]B=ei[I]BB=(e1e2en)=In

Invertibility of representation matrix #lemma

Let T:VU linear transformationLet B,C bases of V,UThen T is invertible [T]CB is invertibleProof:Let T be invertibledim(V)=dim(U)=n[T]CBFn×n[T1]BC[T]CB=[T1T]BB=[I]BB=I[T1]BC is an inverse of [T]CBLet [T]CB be invertible[T]CBFn×ndim(V)=dim(U)=n[T is surjectiveT is injective]Let vker(T)T(v)=0[T(v)]C=[0]C=0[T(v)]C=[T]CB[v]B=0[T]CB is invertibleN([T]CB)={0}[v]B=0v=0ker(T)={0}T is injectiveT is bijectiveT is invertible
T:VBUC,S[T]CB=[I]CS[T]SB=([I]SC)1[T]SBMuch easier to calculate [T]SB than [T]CBMight be much easier to calculate ([I]SC)1 than [I]CS

Representation matrix, Kernel and Image #lemma

Let T:VU linear transformationLet B,D bases of V,UThen 1.[ker(T)]B=N([T]DB)2.[Im(T)]D=C([T]DB)Proof for 1.[v]B[ker(T)]Bvker(T)T(v)=0[T(v)]D=[0]D=0[T]DB[v]BvV=[T(v)]D=0[v]BN([T]DB)[ker(T)]B=N([TDB])Proof for 2.[u]D[Im(T)]DuIm(T)vV:T(v)=uT(v)Im(T)[T(v)]D[Im(T)]D[T]DB[v]BvV[Im(T)]DNote: [T]DB[v]B is a linear combination of columns of [T]DB[T]DB[v]BC([T]DB)[Im(T)]D=C([T]DB)

Example

T:R2[x]ER2×2FE={1,1+x,1+x2}F={(0001),(1000),(0200),(0011)}[T]FE=(102013115111)[T(1)]F=(1011),[T(1+x)]F=(0111),[T(1+x2)]F=(2351)a+bx+cx2=α(1)+β(1+x)+γ(1+x2){α=abcβ=bγ=cLet vR2[x][T]FE[v]E=[T]FE[a+bx+cx2]E==(102013115111)(abcbc)=(ab+cb+3ca4ca2b2c)=[T(v)]FT(v)=T(a+bx+cx2)==(ab+c)(0001)+(b+3c)(1000)+(a4c)(0200)+(a2b2c)(0011)==(b+3c2a8ca2b2cb3c)