Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Linear-1 12
Linear-1 12
Properties of representation matrix
#lemma
Let
T
2
,
T
1
:
V
→
U
linear transformations
S
:
U
→
W
linear transformation
B
,
C
,
E
bases of
V
,
U
,
W
α
∈
F
Then:
1.
[
T
2
+
T
1
]
C
B
=
[
T
2
]
C
B
+
[
T
1
]
C
B
2.
[
α
T
1
]
C
B
=
α
[
T
1
]
C
B
3.
[
S
T
1
⏟
S
∘
T
1
]
E
B
=
[
S
]
E
C
⋅
[
T
1
]
C
B
Proof for 1.
Let
v
∈
V
(
[
T
2
]
C
B
+
[
T
1
]
C
B
)
[
v
]
B
=
[
T
2
]
C
B
[
v
]
B
+
[
T
1
]
C
B
[
v
]
B
=
[
T
2
(
v
)
]
C
+
[
T
1
(
v
)
]
C
=
[
T
2
(
v
)
+
T
1
(
v
)
]
C
=
=
[
(
T
2
+
T
1
)
(
v
)
]
C
⟹
[
T
2
]
C
B
+
[
T
1
]
C
B
=
[
T
2
+
T
1
]
C
B
Proof for 2.
Let
v
∈
V
(
α
[
T
1
]
C
B
)
[
v
]
B
=
α
(
[
T
1
]
C
B
[
v
]
B
)
=
α
[
T
1
(
v
)
]
C
=
[
(
α
T
1
)
(
v
)
]
C
⟹
α
[
T
1
]
C
B
=
[
α
T
1
]
C
B
Proof for 3.
Let
v
∈
V
(
[
S
]
E
C
⋅
[
T
1
]
C
B
)
[
v
]
B
=
[
S
]
E
C
(
[
T
1
]
C
B
⋅
[
v
]
B
)
=
[
S
]
E
C
⋅
[
T
1
(
v
)
]
C
=
[
S
(
T
1
(
v
)
)
]
E
=
[
(
S
T
1
)
(
v
)
]
E
⟹
[
S
]
E
C
⋅
[
T
1
]
C
B
=
[
S
T
1
]
E
B
Representation matrix of Identity transformation
#lemma
Let
V
be a finitely generated vector space over
F
Let
B
basis of
V
Then
[
I
]
B
B
=
I
Proof:
Let
v
∈
V
[
I
]
B
B
[
v
]
B
=
[
I
(
v
)
]
B
=
[
v
]
B
⟹
[
I
]
B
B
=
I
[
I
]
B
B
=
(
⋮
⋮
[
I
(
v
1
)
]
B
…
[
I
(
v
n
)
]
B
⋮
⋮
)
=
(
⋮
⋮
[
v
1
]
B
…
[
v
n
]
B
⋮
⋮
)
∀
i
∈
[
1
,
n
]
:
[
v
i
]
B
=
e
i
⟹
[
I
]
B
B
=
(
⋮
⋮
⋮
e
1
e
2
…
e
n
⋮
⋮
⋮
)
=
I
n
Invertibility of representation matrix
#lemma
Let
T
:
V
→
U
linear transformation
Let
B
,
C
bases of
V
,
U
Then
T
is invertible
⟺
[
T
]
C
B
is invertible
Proof:
Let
T
be invertible
⟹
d
i
m
(
V
)
=
d
i
m
(
U
)
=
n
⟹
[
T
]
C
B
∈
F
n
×
n
[
T
−
1
]
B
C
[
T
]
C
B
=
[
T
−
1
T
]
B
B
=
[
I
]
B
B
=
I
⟹
[
T
−
1
]
B
C
is an inverse of
[
T
]
C
B
Let
[
T
]
C
B
be invertible
⟹
[
T
]
C
B
∈
F
n
×
n
⟹
d
i
m
(
V
)
=
d
i
m
(
U
)
=
n
⟹
[
T
is surjective
⟺
T
is injective
]
Let
v
∈
k
e
r
(
T
)
⟹
T
(
v
)
=
0
⟹
[
T
(
v
)
]
C
=
[
0
]
C
=
0
⟹
[
T
(
v
)
]
C
=
[
T
]
C
B
[
v
]
B
=
0
[
T
]
C
B
is invertible
⟹
N
(
[
T
]
C
B
)
=
{
0
}
⟹
[
v
]
B
=
0
⟹
v
=
0
⟹
k
e
r
(
T
)
=
{
0
}
⟹
T
is injective
⟹
T
is bijective
⟹
T
is invertible
T
:
V
B
→
U
C
,
S
[
T
]
C
B
=
[
I
]
C
S
⋅
[
T
]
S
B
=
(
[
I
]
S
C
)
−
1
[
T
]
S
B
Much easier to calculate
[
T
]
S
B
than
[
T
]
C
B
Might be much easier to calculate
(
[
I
]
S
C
)
−
1
than
[
I
]
C
S
Representation matrix, Kernel and Image
#lemma
Let
T
:
V
→
U
linear transformation
Let
B
,
D
bases of
V
,
U
Then
1.
[
k
e
r
(
T
)
]
B
=
N
(
[
T
]
D
B
)
2.
[
I
m
(
T
)
]
D
=
C
(
[
T
]
D
B
)
Proof for 1.
[
v
]
B
∈
[
k
e
r
(
T
)
]
B
⟺
v
∈
k
e
r
(
T
)
⟺
T
(
v
)
=
0
⟺
[
T
(
v
)
]
D
=
[
0
]
D
=
0
⟺
[
T
]
D
B
[
v
]
B
⏟
v
∈
V
=
[
T
(
v
)
]
D
=
0
⟺
[
v
]
B
∈
N
(
[
T
]
D
B
)
⟹
[
k
e
r
(
T
)
]
B
=
N
(
[
T
D
B
]
)
Proof for 2.
[
u
]
D
∈
[
I
m
(
T
)
]
D
⟺
u
∈
I
m
(
T
)
⟺
∃
v
∈
V
:
T
(
v
)
=
u
⟺
T
(
v
)
∈
I
m
(
T
)
⟺
[
T
(
v
)
]
D
∈
[
I
m
(
T
)
]
D
⟺
[
T
]
D
B
[
v
]
B
⏟
v
∈
V
∈
[
I
m
(
T
)
]
D
Note:
[
T
]
D
B
[
v
]
B
is a linear combination of columns of
[
T
]
D
B
⟺
[
T
]
D
B
[
v
]
B
∈
C
(
[
T
]
D
B
)
⟹
[
I
m
(
T
)
]
D
=
C
(
[
T
]
D
B
)
Example
T
:
R
2
[
x
]
E
→
R
2
×
2
F
E
=
{
1
,
1
+
x
,
1
+
x
2
}
F
=
{
(
0
0
0
−
1
)
,
(
1
0
0
0
)
,
(
0
2
0
0
)
,
(
0
0
1
1
)
}
[
T
]
F
E
=
(
1
0
2
0
1
3
1
1
5
1
−
1
−
1
)
⟹
[
T
(
1
)
]
F
=
(
1
0
1
1
)
,
[
T
(
1
+
x
)
]
F
=
(
0
1
1
−
1
)
,
[
T
(
1
+
x
2
)
]
F
=
(
2
3
5
−
1
)
a
+
b
x
+
c
x
2
=
α
(
1
)
+
β
(
1
+
x
)
+
γ
(
1
+
x
2
)
⟹
{
α
=
a
−
b
−
c
β
=
b
γ
=
c
Let
v
∈
R
2
[
x
]
⟹
[
T
]
F
E
[
v
]
E
=
[
T
]
F
E
⋅
[
a
+
b
x
+
c
x
2
]
E
=
=
(
1
0
2
0
1
3
1
1
5
1
−
1
−
1
)
⋅
(
a
−
b
−
c
b
c
)
=
(
a
−
b
+
c
b
+
3
c
a
−
4
c
a
−
2
b
−
2
c
)
=
[
T
(
v
)
]
F
⟹
T
(
v
)
=
T
(
a
+
b
x
+
c
x
2
)
=
=
(
a
−
b
+
c
)
(
0
0
0
−
1
)
+
(
b
+
3
c
)
(
1
0
0
0
)
+
(
a
−
4
c
)
(
0
2
0
0
)
+
(
a
−
2
b
−
2
c
)
(
0
0
1
1
)
=
=
(
b
+
3
c
2
a
−
8
c
a
−
2
b
−
2
c
−
b
−
3
c
)