Cub11k's BIU Notes
Cub11k's BIU Notes
Assignments
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 2
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 8
Infi-1 9
Linear-1
Linear-1 1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 2
Linear-1 3
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Lectures
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 13
Discrete-math 14
Discrete-math 15
Discrete-math 16
Discrete-math 18
Discrete-math 19
Discrete-math 20
Discrete-math 21
Discrete-math 22
Discrete-math 23
Discrete-math 24
Discrete-math 25
Discrete-math 26
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Exam 2023 (2A)
Exam 2023 (2B)
Exam 2023 (A)
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Midterm
Infi-1
Exam 2022B (A)
Exam 2022B (B)
Exam 2023B (A)
Exam 2023B (B)
Exam 2024 (A)
Exam 2024 (B)
Exam 2025 (A)
Infi-1 10
Infi-1 12
Infi-1 13
Infi-1 14
Infi-1 15
Infi-1 16
Infi-1 17
Infi-1 19
Infi-1 20
Infi-1 21
Infi-1 22
Infi-1 23
Infi-1 24
Infi-1 25
Infi-1 26
Infi-1 5
Infi-1 6
Infi-1 7
Infi-1 9
Midterm
Theorems and proofs
Infi-2
Infi-2 1
Infi-2 10
Infi-2 11
Infi-2 12
Infi-2 13
Infi-2 14
Infi-2 15
Infi-2 16
Infi-2 17
Infi-2 2-3
Infi-2 3-4
Infi-2 5
Infi-2 6
Infi-2 7
Infi-2 8
Infi-2 9
Linear-1
Exam 2023 (B)
Exam 2023 (C)
Exam 2024 (A)
Exam 2024 (B)
Exam 2024 (C)
Exam 2025 (A)
Linear-1 11
Linear-1 12
Linear-1 13
Linear-1 4
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Midterm
Random exams
Theorems and proofs
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Linear-2 8
Seminars
CSI
CSI 2
Data-structures
Data-structures 1
Data-structures 2
Data-structures 3
Discrete-math
Discrete-math 1
Discrete-math 10
Discrete-math 11
Discrete-math 12
Discrete-math 2
Discrete-math 3
Discrete-math 4
Discrete-math 5
Discrete-math 6
Discrete-math 7
Discrete-math 8
Discrete-math 9
Infi-1
Infi-1 10
Infi-1 11
Infi-1 12
Infi-1 13
Infi-1 3
Infi-1 4
Infi-1 5
Infi-1 6
Infi-1 8
Infi-2
Infi-2 1
Infi-2 2
Infi-2 3
Infi-2 4
Infi-2 6
Infi-2 7
Infi-2 8
Linear-1
Linear-1 10
Linear-1 11
Linear-1 12
Linear-1 3
Linear-1 5
Linear-1 6
Linear-1 7
Linear-1 8
Linear-1 9
Linear-2
Linear-2 1
Linear-2 2
Linear-2 3
Linear-2 4
Linear-2 5
Linear-2 6
Linear-2 7
Templates
Lecture Template
Seminar Template
Home
Linear-1 13
Linear-1 13
W
=
s
p
(
{
1
+
x
+
x
2
,
x
+
x
2
}
)
U
=
{
p
(
x
)
∈
R
2
[
x
]
|
p
(
1
)
=
0
p
′
(
1
)
=
0
}
Find basis and dimension of
U
+
W
,
U
∩
W
Solution:
Let
p
(
x
)
∈
U
p
(
x
)
=
a
+
b
x
+
c
x
2
p
(
1
)
=
a
+
b
+
c
⟹
a
+
b
+
c
=
0
p
′
(
x
)
=
b
+
2
c
x
p
′
(
1
)
=
b
+
2
c
⟹
b
+
2
c
=
0
{
a
+
b
+
c
=
0
b
+
2
c
=
0
⟹
{
a
=
c
b
=
−
2
c
⟹
U
=
s
p
(
{
1
−
2
x
+
x
2
}
)
⟹
U
+
W
=
s
p
(
{
1
−
2
x
+
x
2
,
1
+
x
+
x
2
,
x
+
x
2
}
)
(
1
−
2
1
1
1
1
0
1
1
)
→
(
1
−
2
1
0
3
0
0
1
1
)
→
(
1
−
2
1
0
1
0
0
0
1
)
⟹
{
1
−
2
x
+
x
2
,
1
+
x
+
x
2
,
x
+
x
2
}
is a linear independence
⟹
U
+
W
=
R
2
[
x
]
d
i
m
(
U
+
W
)
=
d
i
m
(
U
)
+
d
i
m
(
W
)
−
d
i
m
(
U
∩
W
)
⟹
3
=
1
+
2
−
d
i
m
(
U
∩
W
)
⟹
d
i
m
(
U
∩
W
)
=
0
⟹
U
∩
W
=
{
0
}
A
,
B
∈
F
n
×
n
Prove:
d
i
m
(
N
(
A
B
)
)
≤
d
i
m
(
N
(
A
)
)
+
d
i
m
(
N
(
B
)
)
Proof:
Let
v
∈
N
(
B
)
B
v
=
0
⟹
A
B
v
=
0
⟹
N
(
B
)
⊆
N
(
A
B
)
⟹
d
i
m
(
N
(
B
)
)
≤
d
i
m
(
N
(
A
B
)
)
Let
B
=
{
v
1
,
…
,
v
k
}
be a basis of
N
(
B
)
Let us add vectors
{
u
1
,
…
,
u
t
}
to
B
such that
B
′
=
{
v
1
,
…
,
v
k
,
u
1
,
…
,
u
t
}
is a basis of
N
(
A
B
)
∀
i
∈
[
1
,
t
]
:
A
B
u
i
=
0
⟹
{
B
u
1
,
B
u
2
,
…
,
B
u
t
}
⊆
N
(
A
)
Let
α
1
,
…
,
α
t
∈
F
α
1
B
u
1
+
⋯
+
α
t
B
u
t
=
0
⟹
B
(
α
1
u
1
+
⋯
+
α
t
u
t
)
=
0
⟹
α
1
u
1
+
⋯
+
α
t
u
t
∈
N
(
B
)
⟹
∃
{
β
1
,
…
,
β
k
}
⊆
F
:
α
1
u
1
+
⋯
+
α
t
u
t
=
∑
i
=
1
k
β
k
v
k
⟹
α
1
u
1
+
⋯
+
α
t
u
t
−
∑
i
=
1
k
β
k
v
k
=
0
{
v
1
,
…
,
v
k
,
u
1
,
…
,
u
t
}
is a linear independence
⟹
α
1
=
⋯
=
α
t
=
β
1
=
⋯
=
β
k
=
0
⟹
{
B
u
1
,
…
,
B
u
t
}
is a linear independence
⟹
d
i
m
(
N
(
A
)
)
≥
t
⟹
d
i
m
(
N
(
A
)
)
+
d
i
m
(
N
(
B
)
)
≥
k
+
t
=
d
i
m
(
N
(
A
B
)
)
B
=
{
1
,
1
+
x
,
1
+
x
2
}
is a basis of
R
2
[
x
]
C
=
{
(
0
0
0
−
1
)
,
(
1
0
0
0
)
,
(
0
2
0
0
)
,
(
0
0
1
1
)
}
is basis of
R
2
×
2
Let
T
:
R
2
[
x
]
→
R
2
×
2
be a linear transformation
[
T
]
C
B
=
(
1
0
2
0
1
3
1
1
5
1
−
1
−
1
)
Find basis and dimension of
I
m
(
T
)
,
k
e
r
(
T
)
Solution:
[
T
(
1
)
]
C
=
(
1
0
1
1
)
⟹
T
(
1
)
=
(
0
2
1
0
)
[
T
(
1
+
x
)
]
C
=
(
0
1
1
−
1
)
⟹
T
(
1
+
x
)
=
(
1
2
−
1
−
1
)
[
T
(
1
+
x
2
)
]
C
=
(
2
3
5
−
1
)
⟹
T
(
1
+
x
2
)
=
(
3
5
−
1
−
3
)
Another way (right way):
[
k
e
r
(
T
)
]
B
=
N
(
[
T
]
C
B
)
(
1
0
2
0
1
3
1
1
5
1
−
1
−
1
)
→
(
1
0
2
0
1
3
0
1
3
0
−
1
−
3
)
→
(
1
0
2
0
1
3
0
0
0
0
0
0
)
⟹
[
k
e
r
(
T
)
]
B
=
s
p
(
{
(
−
2
−
3
1
)
}
)
[
u
]
B
=
(
−
2
−
3
1
)
⟹
u
=
−
4
−
3
x
+
1
⟹
k
e
r
(
T
)
=
s
p
(
{
−
4
−
3
x
+
1
}
)
[
I
m
(
T
)
]
C
=
C
(
[
T
]
C
B
)
=
s
p
(
{
(
1
0
1
1
)
,
(
0
1
1
−
1
)
}
)
[
v
]
C
=
(
1
0
1
1
)
⟹
v
=
(
0
2
1
0
)
[
w
]
C
=
(
0
1
1
−
1
)
⟹
w
=
(
1
2
−
1
−
1
)
⟹
I
m
(
T
)
=
s
p
(
{
(
0
2
1
0
)
,
(
1
2
−
1
−
1
)
}
)
Let
V
,
W
be vector spaces
Let
T
,
S
:
V
→
W
be linear transformations
Let
S
be invertible
Let
T
S
−
1
be injective
Prove or disprove:
T
is invertible
Proof:
T
S
−
1
:
W
→
W
is a linear transformation
T
S
−
1
is injective and
d
i
m
(
W
)
=
d
i
m
(
W
)
⟹
T
S
−
1
is invertible
T
S
−
1
is surjective
⟹
T
is surjective
(
1
)
S
is invertible
⟹
d
i
m
(
V
)
=
d
i
m
(
W
)
(
2
)
(
1
)
and
(
2
)
⟹
T
is invertible
Let
A
,
B
∈
F
n
×
n
Prove or disprove:
1.
r
a
n
k
(
A
)
<
n
2
and
r
a
n
k
(
B
)
<
n
2
⟹
A
B
=
0
2.
A
B
=
0
⟹
r
a
n
k
(
A
)
≤
n
2
or
r
a
n
k
(
B
)
≤
n
2
Disproof for 1:
A
=
B
=
(
1
0
0
0
0
0
0
0
0
)
A
B
=
(
1
0
0
0
0
0
0
0
0
)
≠
0
Proof for 2:
A
B
=
0
⟹
r
a
n
k
(
A
B
)
=
0
⟹
d
i
m
(
N
(
A
B
)
)
=
n
n
≤
d
i
m
(
N
(
A
)
)
+
d
i
m
(
N
(
B
)
)
∀
v
∈
N
(
A
B
)
:
A
B
v
=
0
⟹
B
v
∈
N
(
A
)
∀
v
∈
F
n
:
B
v
∈
C
(
B
)
⟹
C
(
B
)
⊆
N
(
A
)
⟹
d
i
m
(
C
(
B
)
)
≤
d
i
m
(
N
(
A
)
)
⟹
r
a
n
k
(
B
)
≤
n
−
r
a
n
k
(
A
)
⟹
r
a
n
k
(
A
)
+
r
a
n
k
(
B
)
≤
n
⟹
[
r
a
n
k
(
A
)
<
n
2
r
a
n
k
(
B
)
<
n
2
Let
A
∈
R
3
×
3
be anti-symmetric
Prove:
A
(
1
1
1
)
=
(
a
b
c
)
⟹
a
+
b
+
c
=
0
Proof:
(
0
a
2
a
3
−
a
2
0
a
5
−
a
3
−
a
5
0
)
(
1
1
1
)
=
(
a
2
+
a
3
a
5
−
a
2
−
a
3
−
a
5
)
{
a
2
+
a
3
=
a
a
5
−
a
2
=
b
−
a
3
−
a
5
=
c
⟹
a
+
b
+
c
=
a
2
+
a
3
+
a
5
−
a
2
−
a
3
−
a
5
=
0
Note: this doesn’t work in
Z
2
Because
(
1
0
0
0
1
0
0
0
1
)
∈
Z
2
3
×
3
is anti-symmetric
Let
V
,
W
be finitely generated vector space over
F
Let
T
:
V
→
W
be a linear transformation
Let
S
:
W
→
V
be a linear transformation such that
T
S
T
=
T
Prove or disprove:
1.
k
e
r
(
S
)
=
{
0
}
2.
k
e
r
(
S
)
∩
I
m
(
T
)
=
{
0
}
3.
Prove that such
S
exists
Disproof for 1:
Let
T
=
S
=
0
⟹
T
S
T
=
T
and
k
e
r
(
S
)
=
W
≠
{
0
}
Proof for 2:
Let
w
∈
k
e
r
(
S
)
∩
I
m
(
T
)
S
(
w
)
=
0
,
∃
v
∈
V
:
T
(
v
)
=
w
⟹
∃
v
∈
V
:
(
S
T
)
(
v
)
=
0
⟹
(
T
S
T
)
(
v
)
=
0
⟹
T
(
v
)
=
0
⟹
w
=
0
⟹
k
e
r
(
S
)
∩
I
m
(
T
)
⊆
{
0
}
⟹
k
e
r
(
S
)
∩
I
m
(
T
)
=
{
0
}
Proof for 3:
Let
{
w
1
,
…
,
w
k
}
be a basis of
I
m
(
T
)
⟹
∀
i
∈
[
1
,
k
]
:
∃
v
i
∈
V
:
T
(
v
i
)
=
w
i
Let
{
w
1
,
…
,
w
k
,
u
1
,
…
,
u
t
}
be a basis of
W
By the "definition theorem" exists linear transformation
S
:
W
→
V
such that
Let
S
:
W
→
V
,
∀
i
∈
[
1
,
k
+
t
]
:
S
(
w
i
)
=
{
v
i
i
≤
k
0
i
>
k
Let
v
∈
V
T
(
v
)
=
w
(
T
S
T
)
(
v
)
=
(
T
S
)
(
T
(
v
)
)
=
(
T
S
)
(
w
)
=
(
T
S
)
(
∑
i
=
1
k
α
i
w
i
)
=
T
(
∑
i
=
1
k
α
i
S
(
w
i
)
)
=
=
T
(
∑
i
=
1
k
α
i
v
i
)
=
∑
i
=
1
k
α
i
T
(
v
i
)
=
∑
i
=
1
k
α
i
w
i
=
w
=
T
(
v
)