Linear-1 13

Linear-1 13

W=sp({1+x+x2,x+x2})U={p(x)R2[x]|p(1)=0p(1)=0}Find basis and dimension of U+W,UWSolution:Let p(x)Up(x)=a+bx+cx2p(1)=a+b+ca+b+c=0p(x)=b+2cxp(1)=b+2cb+2c=0{a+b+c=0b+2c=0{a=cb=2cU=sp({12x+x2})U+W=sp({12x+x2,1+x+x2,x+x2})(121111011)(121030011)(121010001){12x+x2,1+x+x2,x+x2} is a linear independenceU+W=R2[x]dim(U+W)=dim(U)+dim(W)dim(UW)3=1+2dim(UW)dim(UW)=0UW={0}
A,BFn×nProve: dim(N(AB))dim(N(A))+dim(N(B))Proof:Let vN(B)Bv=0ABv=0N(B)N(AB)dim(N(B))dim(N(AB))Let B={v1,,vk} be a basis of N(B)Let us add vectors {u1,,ut} to B such thatB={v1,,vk,u1,,ut} is a basis of N(AB)i[1,t]:ABui=0{Bu1,Bu2,,But}N(A)Let α1,,αtFα1Bu1++αtBut=0B(α1u1++αtut)=0α1u1++αtutN(B){β1,,βk}F:α1u1++αtut=i=1kβkvkα1u1++αtuti=1kβkvk=0{v1,,vk,u1,,ut} is a linear independenceα1==αt=β1==βk=0{Bu1,,But} is a linear independencedim(N(A))tdim(N(A))+dim(N(B))k+t=dim(N(AB))
B={1,1+x,1+x2} is a basis of R2[x]C={(0001),(1000),(0200),(0011)} is basis of R2×2Let T:R2[x]R2×2 be a linear transformation[T]CB=(102013115111)Find basis and dimension of Im(T),ker(T)Solution:[T(1)]C=(1011)T(1)=(0210)[T(1+x)]C=(0111)T(1+x)=(1211)[T(1+x2)]C=(2351)T(1+x2)=(3513)Another way (right way):[ker(T)]B=N([T]CB)(102013115111)(102013013013)(102013000000)[ker(T)]B=sp({(231)})[u]B=(231)u=43x+1ker(T)=sp({43x+1})[Im(T)]C=C([T]CB)=sp({(1011),(0111)})[v]C=(1011)v=(0210)[w]C=(0111)w=(1211)Im(T)=sp({(0210),(1211)})
Let V,W be vector spacesLet T,S:VW be linear transformationsLet S be invertibleLet TS1 be injectiveProve or disprove: T is invertibleProof:TS1:WW is a linear transformationTS1 is injective and dim(W)=dim(W)TS1 is invertibleTS1 is surjectiveT is surjective(1)S is invertibledim(V)=dim(W)(2)(1) and (2)T is invertible
Let A,BFn×nProve or disprove:1.rank(A)<n2 and rank(B)<n2AB=02.AB=0rank(A)n2 or rank(B)n2Disproof for 1:A=B=(100000000)AB=(100000000)0Proof for 2:AB=0rank(AB)=0dim(N(AB))=nndim(N(A))+dim(N(B))vN(AB):ABv=0BvN(A)vFn:BvC(B)C(B)N(A)dim(C(B))dim(N(A))rank(B)nrank(A)rank(A)+rank(B)n[rank(A)<n2rank(B)<n2
Let AR3×3 be anti-symmetricProve: A(111)=(abc)a+b+c=0Proof:(0a2a3a20a5a3a50)(111)=(a2+a3a5a2a3a5){a2+a3=aa5a2=ba3a5=ca+b+c=a2+a3+a5a2a3a5=0Note: this doesn’t work in Z2Because (100010001)Z23×3 is anti-symmetric
Let V,W be finitely generated vector space over FLet T:VW be a linear transformationLet S:WV be a linear transformation such that TST=TProve or disprove:1.ker(S)={0}2.ker(S)Im(T)={0}3.Prove that such S existsDisproof for 1:Let T=S=0TST=T and ker(S)=W{0}Proof for 2:Let wker(S)Im(T)S(w)=0,vV:T(v)=wvV:(ST)(v)=0(TST)(v)=0T(v)=0w=0ker(S)Im(T){0}ker(S)Im(T)={0}Proof for 3:Let {w1,,wk} be a basis of Im(T)i[1,k]:viV:T(vi)=wiLet {w1,,wk,u1,,ut} be a basis of WBy the "definition theorem" exists linear transformation S:WV such thatLet S:WV,i[1,k+t]:S(wi)={viik0i>kLet vVT(v)=w(TST)(v)=(TS)(T(v))=(TS)(w)=(TS)(i=1kαiwi)=T(i=1kαiS(wi))==T(i=1kαivi)=i=1kαiT(vi)=i=1kαiwi=w=T(v)